A curated list of awesome Active Learning

Overview

Awesome Active Learning Awesome

🤩 A curated list of awesome Active Learning ! 🤩

Background

(image source: Settles, Burr)

What is Active Learning?

Active learning is a special case of machine learning in which a learning algorithm can interactively query a oracle (or some other information source) to label new data points with the desired outputs.

(image source: Settles, Burr)

There are situations in which unlabeled data is abundant but manual labeling is expensive. In such a scenario, learning algorithms can actively query the oracle for labels. This type of iterative supervised learning is called active learning. Since the learner chooses the examples, the number of examples to learn a concept can often be much lower than the number required in normal supervised learning. With this approach, there is a risk that the algorithm is overwhelmed by uninformative examples. Recent developments are dedicated to multi-label active learning, hybrid active learning and active learning in a single-pass (on-line) context, combining concepts from the field of machine learning (e.g. conflict and ignorance) with adaptive, incremental learning policies in the field of online machine learning.

(source: Wikipedia)

Contributing

If you find the awesome paper/code/book/tutorial or have some suggestions, please feel free to pull requests or contact [email protected] to add papers using the following Markdown format:

Year | Paper Name | Conference | [Paper](link) | [Code](link) | Tags | Notes |

Thanks for your valuable contribution to the research community. 😃

Table of Contents

Books

Surveys

Papers

Tags

Sur.: survey | Cri.: critics | Pool.: pool-based sampling | Str.: stream-based sampling | Syn.: membership query synthesize | Meta.: meta learning | SSL.: semi-supervised learning | RL.: reinforcement learning | FS.: few-shot learning | SS.: self-supervised |

Before 2017

Year Title Conf Paper Code Tags Notes
1994 Improving Generalization with Active Learning Machine Learning paper
2007 Discriminative Batch Mode Active Learning NIPS paper
2008 Active Learning with Direct Query Construction KDD paper
2008 An Analysis of Active Learning Strategies for Sequence Labeling Tasks EMNLP paper
2008 Hierarchical Sampling for Active Learning ICML paper
2010 Active Instance Sampling via Matrix Partition NIPS paper
2011 Ask Me Better Questions: Active Learning Queries Based on Rule Induction KDD paper
2011 Active Learning from Crowds ICML paper
2011 Bayesian Active Learning for Classification and Preference Learning CoRR paper
2011 Active Learning Using On-line Algorithms KDD paper
2012 Bayesian Optimal Active Search and Surveying ICML paper
2012 Batch Active Learning via Coordinated Matching ICML paper
2013 Active Learning for Multi-Objective Optimization ICML paper
2013 Active Learning for Probabilistic Hypotheses Usingthe Maximum Gibbs Error Criterion NIPS paper
2014 Active Semi-Supervised Learning Using Sampling Theory for Graph Signals KDD paper
2014 Beyond Disagreement-based Agnostic Active Learning NIPS paper
2016 Cost-Effective Active Learning for Deep Image Classification TCSVT paper
2016 Active Image Segmentation Propagation CVPR paper

2017

Title Conf Paper Code Tags Notes
Active Decision Boundary Annotation with Deep Generative Models ICCV paper
Active One-shot Learning CoRR paper code Str. RL. FS.
A Meta-Learning Approach to One-Step Active-Learning [email protected]/ECML paper Pool. Meta.
Generative Adversarial Active Learning arXiv paper Pool. Syn.
Active Learning from Peers NIPS paper
Learning Active Learning from Data NIPS paper code Pool.
Learning Algorithms for Active Learning ICML paper
Deep Bayesian Active Learning with Image Data ICML paper code Pool.

2018

Title Conf Paper Code Tags Notes
The Power of Ensembles for Active Learning in Image Classification CVPR paper
Adversarial Learning for Semi-Supervised Semantic Segmentation BMVC paper code Pool. SSL.
A Variance Maximization Criterion for Active Learning Pattern Recognition paper
Meta-Learning Transferable Active Learning Policies by Deep Reinforcement Learning ICLR-WS paper Pool. Meta. RL.
Active Learning for Convolutional Neural Networks: A Core-Set Approach ICLR paper
Adversarial Active Learning for Sequence Labeling and Generation IJCAI paper
Meta-Learning for Batch Mode Active Learning ICLR-WS paper

2019

Title Conf Paper Code Tags Notes
ViewAL: Active Learning with Viewpoint Entropy for Semantic Segmentation CVPR paper Pool.
Bayesian Generative Active Deep Learning ICML paper code Pool. Semi.
Variational Adversarial Active Learning ICCV paper code Pool. SSL.
Integrating Bayesian and Discriminative Sparse Kernel Machines for Multi-class Active Learning NeurIPS paper
Active Learning via Membership Query Synthesisfor Semi-supervised Sentence Classification CoNLL paper
Discriminative Active Learning arXiv paper
Semantic Redundancies in Image-Classification Datasets: The 10% You Don’t Need arXiv paper
Bayesian Batch Active Learning as Sparse Subset Approximation NIPS paper
Learning Loss for Active Learning CVPR paper code Pool.
Rapid Performance Gain through Active Model Reuse IJCAI paper
Parting with Illusions about Deep Active Learning arXiv paper Cri.
BatchBALD: Efficient and Diverse Batch Acquisition for Deep Bayesian Active Learning NIPS paper

2020

Title Conf Paper Code Tags Notes
Reinforced active learning for image segmentation ICLR paper code Pool. RL.
[BADGE] Batch Active learning by Diverse Gradient Embeddings ICLR paper code Pool.
Adversarial Sampling for Active Learning WACV paper Pool.
Online Active Learning of Reject Option Classifiers AAAI paper
Deep Active Learning for Biased Datasets via Fisher Kernel Self-Supervision CVPR paper
Deep Reinforcement Active Learning for Medical Image Classification MICCAI paper Pool. RL.
State-Relabeling Adversarial Active Learning CVPR paper code Pool.
Towards Robust and Reproducible Active Learning Using Neural Networks arXiv paper Cri.
Consistency-Based Semi-supervised Active Learning: Towards Minimizing Labeling Cost ECCV paper Pool. SSL.

2021

Title Conf Paper Code Tags Notes
MedSelect: Selective Labeling for Medical Image Classification Combining Meta-Learning with Deep Reinforcement Learning arXiv paper Pool. Meta. RL.
Can Active Learning Preemptively Mitigate Fairness Issues ICLR-RAI paper code Pool. Thinking fairness issues
Sequential Graph Convolutional Network for Active Learning CVPR paper code Pool.
Task-Aware Variational Adversarial Active Learning CVPR paper code Pool.
Effective Evaluation of Deep Active Learning on Image Classification Tasks arXiv paper Cri.
Semi-Supervised Active Learning for Semi-Supervised Models: Exploit Adversarial Examples With Graph-Based Virtual Labels ICCV paper Pool. SSL.
Contrastive Coding for Active Learning under Class Distribution Mismatch ICCV paper code Pool. Defines a good question
Mind Your Outliers! Investigating the Negative Impact of Outliers on Active Learning for Visual Question Answering ACL-IJCNLP paper code Pool. Thinking about outliers
LADA: Look-Ahead Data Acquisition via Augmentation for Active Learning NeurIPS paper Pool.
Multi-Anchor Active Domain Adaptation for Semantic Segmentation ICCV paper code Pool.
Active Learning for Lane Detection: A Knowledge Distillation Approach ICCV paper Pool.
Active Contrastive Learning of Audio-Visual Video Representations ICLR paper code Pool.
Multiple instance active learning for object detection CVPR paper code Pool.
SEAL: Self-supervised Embodied Active Learning using Exploration and 3D Consistency NeurIPS paper Robot exploration
Influence Selection for Active Learning ICCV paper code Pool.
Reducing Label Effort: Self-Supervised meets Active Learning arXiv paper Pool. SS. Cri. A meaningful attempt on the combination of SS & AL

Turtorials

Tools

Owner
BAI Fan
Deep Learning, Active Learning, Robotics, Artificial Intelligence.
BAI Fan
Semi-supervised semantic segmentation needs strong, varied perturbations

Semi-supervised semantic segmentation using CutMix and Colour Augmentation Implementations of our papers: Semi-supervised semantic segmentation needs

146 Dec 20, 2022
LaneAF: Robust Multi-Lane Detection with Affinity Fields

LaneAF: Robust Multi-Lane Detection with Affinity Fields This repository contains Pytorch code for training and testing LaneAF lane detection models i

155 Dec 17, 2022
Code for Subgraph Federated Learning with Missing Neighbor Generation (NeurIPS 2021)

To run the code Unzip the package to your local directory; Run 'pip install -r requirements.txt' to download required packages; Open file ~/nips_code/

32 Dec 26, 2022
Automatic Number Plate Recognition using Contours and Convolution Neural Networks (CNN)

Cite our paper if you find this project useful https://www.ijariit.com/manuscripts/v7i4/V7I4-1139.pdf Abstract Image processing technology is used in

Adithya M 2 Jun 28, 2022
AFLFast (extends AFL with Power Schedules)

AFLFast Power schedules implemented by Marcel Böhme [email protected]

Marcel Böhme 380 Jan 03, 2023
Lab Materials for MIT 6.S191: Introduction to Deep Learning

This repository contains all of the code and software labs for MIT 6.S191: Introduction to Deep Learning! All lecture slides and videos are available

Alexander Amini 5.6k Dec 26, 2022
Benchmarks for the Optimal Power Flow Problem

Power Grid Lib - Optimal Power Flow This benchmark library is curated and maintained by the IEEE PES Task Force on Benchmarks for Validation of Emergi

A Library of IEEE PES Power Grid Benchmarks 207 Dec 08, 2022
Repository relating to the CVPR21 paper TimeLens: Event-based Video Frame Interpolation

TimeLens: Event-based Video Frame Interpolation This repository is about the High Speed Event and RGB (HS-ERGB) dataset, used in the 2021 CVPR paper T

Robotics and Perception Group 544 Dec 19, 2022
AAI supports interdisciplinary research to help better understand human, animal, and artificial cognition.

AnimalAI 3 AAI supports interdisciplinary research to help better understand human, animal, and artificial cognition. It aims to support AI research t

Matthew Crosby 58 Dec 12, 2022
This is an open-source toolkit for Heterogeneous Graph Neural Network(OpenHGNN) based on DGL [Deep Graph Library] and PyTorch.

This is an open-source toolkit for Heterogeneous Graph Neural Network(OpenHGNN) based on DGL [Deep Graph Library] and PyTorch.

BUPT GAMMA Lab 519 Jan 02, 2023
Pytorch implementation for "Density-aware Chamfer Distance as a Comprehensive Metric for Point Cloud Completion" (NeurIPS 2021)

Density-aware Chamfer Distance This repository contains the official PyTorch implementation of our paper: Density-aware Chamfer Distance as a Comprehe

Tong WU 93 Dec 15, 2022
ICCV2021 Expert-Goal Trajectory Prediction

ICCV 2021: Where are you heading? Dynamic Trajectory Prediction with Expert Goal Examples This repository contains the code for the paper Where are yo

hz 21 Dec 12, 2022
Transformer in Vision

Transformer-in-Vision Recent Transformer-based CV and related works. Welcome to comment/contribute! Keep updated. Resource SCENIC: A JAX Library for C

Yong-Lu Li 1.1k Dec 30, 2022
NeuralTalk is a Python+numpy project for learning Multimodal Recurrent Neural Networks that describe images with sentences.

#NeuralTalk Warning: Deprecated. Hi there, this code is now quite old and inefficient, and now deprecated. I am leaving it on Github for educational p

Andrej 5.3k Jan 07, 2023
ICCV2021 Papers with Code

ICCV2021 Papers with Code

Amusi 1.4k Jan 02, 2023
Simulator for FRC 2022 challenge: Rapid React

rrsim Simulator for FRC 2022 challenge: Rapid React out-1.mp4 Usage In order to run the simulator use the following: python3 rrsim.py [config_path] wh

1 Jan 18, 2022
Just playing with getting VQGAN+CLIP running locally, rather than having to use colab.

Just playing with getting VQGAN+CLIP running locally, rather than having to use colab.

Nerdy Rodent 2.3k Jan 04, 2023
A curated list of programmatic weak supervision papers and resources

A curated list of programmatic weak supervision papers and resources

Jieyu Zhang 118 Jan 02, 2023
This is the repository of shape matching algorithm Iterative Rotations and Assignments (IRA)

Description This is the repository of shape matching algorithm Iterative Rotations and Assignments (IRA), described in the publication [1]. Directory

MAMMASMIAS Consortium 6 Nov 14, 2022
Migration of Edge-based Distributed Federated Learning

FedFly: Towards Migration in Edge-based Distributed Federated Learning About the research Due to mobility, a device participating in Federated Learnin

qub-blesson 11 Nov 13, 2022