Evaluating deep transfer learning for whole-brain cognitive decoding

Overview

Evaluating deep transfer learning for whole-brain cognitive decoding

This README file contains the following sections:

Project description

This project provides two main packages (see src/) that allow to apply DeepLight (see below) to the task-fMRI data of the Human Connectome Project (HCP):

  • deeplight is a simple python package that provides easy access to two pre-trained DeepLight architectures (2D-DeepLight and 3D-DeepLight; see below), designed for cognitive decoding of whole-brain fMRI data. Both architecturs were pre-trained with the fMRI data of 400 individuals in six of the seven HCP experimental tasks (all tasks except for the working memory task, which we left out for testing purposes; click here for details on the HCP data).
  • hcprepis a simple python package that allows to easily download the HCP task-fMRI data in a preprocessed format via the Amazon Web Services (AWS) S3 storage system and to transform these data into the tensorflow records data format.

Repository organization

├── poetry.lock         <- Overview of project dependencies
├── pyproject.toml      <- Lists details of installed dependencies
├── README.md           <- This README file
├── .gitignore          <- Specifies files that git should ignore
|
├── scrips/
|    ├── decode.py      <- An example of how to decode fMRI data with `deeplight`
|    ├── download.py    <- An example of how to download the preprocessed HCP fMRI data with `hcprep`
|    ├── interpret.py   <- An example of how to interpret fMRI data with `deeplight`
|    └── preprocess.sh  <- An example of how to preprocess fMRI data with `hcprep`
|    └── train.py       <- An example of how to train with `hcprep`
|
└── src/
|    ├── deeplight/
|    |    └──           <- `deeplight` package
|    ├── hcprep/
|    |    └──           <- 'hcprep' package
|    ├── modules/
|    |    └──           <- 'modules' package
|    └── setup.py       <- Makes 'deeplight', `hcprep`, and `modules` pip-installable (pip install -e .)  

Installation

deeplight and hcprep are written for python 3.6 and require a working python environment running on your computer (we generally recommend pyenv for python version management).

First, clone and switch to this repository:

git clone https://github.com/athms/evaluating-deeplight-transfer.git
cd evaluating-deeplight-transfer

This project uses python poetry for dependency management. To install all required dependencies with poetry, run:

poetry install

To then install deeplight, hcprep, and modules in your poetry environment, run:

cd src/
poetry run pip3 install -e .

Packages

HCPrep

hcprep stores the HCP task-fMRI data data locally in the Brain Imaging Data Structure (BIDS) format.

To make fMRI data usable for DL analyses with TensorFlow, hcprep can clean the downloaded fMRI data and store these in the TFRecords data format.

Getting data access: To download the HCP task-fMRI data, you will need AWS access to the HCP public data directory. A detailed instruction can be found here. Make sure to safely store the ACCESS_KEY and SECRET_KEY; they are required to access the data via the AWS S3 storage system.

AWS configuration: Setup your local AWS client (as described here) and add the following profile to '~/.aws/config'

[profile hcp]
region=eu-central-1

Choose the region based on your location.

TFR data storage: hcprep stores the preprocessed fMRI data locally in TFRecords format, with one entry for each input fMRI volume of the data, each containing the following features:

  • volume: the flattened voxel activations with shape 91x109x91 (flattened over the X (91), Y (109), and Z (91) dimensions)
  • task_id, subject_id, run_id: numerical id of task, subject, and run
  • tr: TR of the volume in the underlying experimental task
  • state: numerical label of the cognive state associated with the volume within its task (e.g., [0,1,2,3] for the four cognitive states of the working memory task)
  • onehot: one-hot encoding of the state across all experimental tasks that are used for training (e.g., there are 20 cognitive tasks across the seven experimental tasks of the HCP; the four cognitive states of the working memory task could thus be mapped to the last four positions of the one-hot encoding, with indices [16: 0, 17: 1, 18: 2, 19: 3])

Note that hcprep also provides basic descriptive information about the HCP task-fMRI data in info.basics:

hcp_info = hcprep.info.basics()

basics contains the following information:

  • tasks: names of all HCP experimental tasks ('EMOTION', 'GAMBLING', 'LANGUAGE', 'MOTOR', 'RELATIONAL', 'SOCIAL', 'WM')
  • subjects: dictionary containing 1000 subject IDs for each task
  • runs: run IDs ('LR', 'RL')
  • t_r: repetition time of the fMRI data in seconds (0.72)
  • states_per_task: dictionary containing the label of each cognitive state of each task
  • onehot_idx_per_task: index that is used to assign cognitive states of each task to the onehotencoding of the TFR-files (see onehot above)

For further details on the experimental tasks and their cognitive states, click here.

DeepLight

deeplight implements two DeepLight architectures ("2D" and "3D"), which can be accessed as deeplight.two (2D) and deeplight.three (3D).

Importantly, both DeepLight architectures operate on the level of individual whole-brain fMRI volumes (e.g., individual TRs).

2D-DeepLight: A whole-brain fMRI volume is first sliced into a sequence of axial 2D-images (from bottom-to-top). These images are passed to a DL model, consisting of a 2D-convolutional feature extractor as well as an LSTM unit and output layer. First, the 2D-convolutional feature extractor reduces the dimensionality of the axial brain images through a sequence of 2D-convolution layers. The resulting sequence of higher-level slice representations is then fed to a bi-directional LSTM, modeling the spatial dependencies of brain activity within and across brain slices. Lastly, 2D-DeepLight outputs a decoding decision about the cognitive state underlying the fMRI volume, through a softmax output layer with one output unit per cognitive state in the data.

3D-DeepLight: The whole-brain fMRI volume is passed to a 3D-convolutional feature extractor, consisting of a sequence of twelve 3D-convolution layers. The 3D-convolutional feature extractor directly projects the fMRI volume into a higher-level, but lower dimensional, representation of whole-brain activity, without the need of an LSTM. To make a decoding decision, 3D-DeepLight utilizes an output layer that is composed of a 1D- convolution and global average pooling layer as well as a softmax activation function. The 1D-convolution layer maps the higher-level representation of whole-brain activity of the 3D-convolutional feature extractor to one representation for each cognitive state in the data, while the global average pooling layer and softmax function then reduce these to a decoding decision.

To interpret the decoding decisions of the two DeepLight architectures, relating their decoding decisions to the fMRI data, deeplight makes use of the LRP technique. The LRP technique decomposes individual decoding decisions of a DL model into the contributions of the individual input features (here individual voxel activities) to these decisions.

Both deeplight architectures implement basic fit, decode, and interpret methods, next to other functionalities. For details on how to {train, decode, interpret} with deeplight, see scripts/.

For further methdological details regarding the two DeepLight architectures, see the upcoming preprint.

Note that we currently recommend to run any applications of interpret with 2D-DeepLight on CPU instead of GPU, due to its high memory demand (assuming that your available CPU memory is larger than your available GPU memory). This switch can be made by setting the environment variable export CUDA_VISIBLE_DEVICES="". We are currently working on reducing the overall memory demand of interpret with 2D-DeepLight and will push a code update soon.

Modules

modules is a fork of the modules module from interprettensor, which deeplight uses to build the 2D-DeepLight architecture. Note that modules is licensed differently from the other python packages in this repository (see modules/LICENSE).

Basic usage

You can find a set of example python scripts in scripts/, which illustrate how to download and preprocess task-fMRI data from the Human Connectome Project with hcprep and how to {train on, decode, interpret} fMRI data with the two DeepLight architectures of deeplight.

You can run individual scripts in your poetryenvironment with:

cd scripts/
poetry run python <SCRIPT NAME>
Owner
Armin Thomas
Ram and Vijay Shriram Data Science Fellow at Stanford Data Science
Armin Thomas
Python wrapper class for OpenVINO Model Server. User can submit inference request to OVMS with just a few lines of code

Python wrapper class for OpenVINO Model Server. User can submit inference request to OVMS with just a few lines of code.

Yasunori Shimura 7 Jul 27, 2022
Learning Modified Indicator Functions for Surface Reconstruction

Learning Modified Indicator Functions for Surface Reconstruction In this work, we propose a learning-based approach for implicit surface reconstructio

4 Apr 18, 2022
Rafael Project- Classifying rockets to different types using data science algorithms.

Rocket-Classify Rafael Project- Classifying rockets to different types using data science algorithms. In this project we received data base with data

Hadassah Engel 5 Sep 18, 2021
Structure-Preserving Deraining with Residue Channel Prior Guidance (ICCV2021)

SPDNet Structure-Preserving Deraining with Residue Channel Prior Guidance (ICCV2021) Requirements Linux Platform NVIDIA GPU + CUDA CuDNN PyTorch == 0.

41 Dec 12, 2022
LBBA-boosted WSOD

LBBA-boosted WSOD Summary Our code is based on ruotianluo/pytorch-faster-rcnn and WSCDN Sincerely thanks for your resources. Newer version of our code

Martin Dong 20 Sep 19, 2022
Implementation of accepted AAAI 2021 paper: Deep Unsupervised Image Hashing by Maximizing Bit Entropy

Deep Unsupervised Image Hashing by Maximizing Bit Entropy This is the PyTorch implementation of accepted AAAI 2021 paper: Deep Unsupervised Image Hash

62 Dec 30, 2022
Logsig-RNN: a novel network for robust and efficient skeleton-based action recognition

GCN_LogsigRNN This repository holds the codebase for the paper: Logsig-RNN: a novel network for robust and efficient skeleton-based action recognition

7 Oct 14, 2022
Implementation of the algorithm shown in the article "Modelo de Predicción de Éxito de Canciones Basado en Descriptores de Audio"

Success Predictor Implementation of the algorithm shown in the article "Modelo de Predicción de Éxito de Canciones Basado en Descriptores de Audio". B

Rodrigo Nazar Meier 4 Mar 17, 2022
The PyTorch implementation of DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision.

DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision The PyTorch implementation of DiscoBox: Weakly Supe

Shiyi Lan 1 Oct 23, 2021
A Benchmark For Measuring Systematic Generalization of Multi-Hierarchical Reasoning

Orchard Dataset This repository contains the code used for generating the Orchard Dataset, as seen in the Multi-Hierarchical Reasoning in Sequences: S

Bill Pung 1 Jun 05, 2022
Cross View SLAM

Cross View SLAM This is the associated code and dataset repository for our paper I. D. Miller et al., "Any Way You Look at It: Semantic Crossview Loca

Ian D. Miller 99 Dec 09, 2022
Official code for the publication "HyFactor: Hydrogen-count labelled graph-based defactorization Autoencoder".

HyFactor Graph-based architectures are becoming increasingly popular as a tool for structure generation. Here, we introduce a novel open-source archit

Laboratoire-de-Chemoinformatique 11 Oct 10, 2022
Accurate 3D Face Reconstruction with Weakly-Supervised Learning: From Single Image to Image Set (CVPRW 2019). A PyTorch implementation.

Accurate 3D Face Reconstruction with Weakly-Supervised Learning: From Single Image to Image Set —— PyTorch implementation This is an unofficial offici

Sicheng Xu 833 Dec 28, 2022
Tensorflow implementation of "Learning Deconvolution Network for Semantic Segmentation"

Tensorflow implementation of Learning Deconvolution Network for Semantic Segmentation. Install Instructions Works with tensorflow 1.11.0 and uses the

Fabian Bormann 224 Apr 15, 2022
Code repository for "Stable View Synthesis".

Stable View Synthesis Code repository for "Stable View Synthesis". Setup Install the following Python packages in your Python environment - numpy (1.1

Intelligent Systems Lab Org 195 Dec 24, 2022
When BERT Plays the Lottery, All Tickets Are Winning

When BERT Plays the Lottery, All Tickets Are Winning Large Transformer-based models were shown to be reducible to a smaller number of self-attention h

Sai 16 Nov 10, 2022
Public scripts, services, and configuration for running a smart home K3S network cluster

makerhouse_network Public scripts, services, and configuration for running MakerHouse's home network. This network supports: TODO features here For mo

Scott Martin 1 Jan 15, 2022
A Python package for causal inference using Synthetic Controls

Synthetic Control Methods A Python package for causal inference using synthetic controls This Python package implements a class of approaches to estim

Oscar Engelbrektson 107 Dec 28, 2022
Spherical Confidence Learning for Face Recognition, accepted to CVPR2021.

Sphere Confidence Face (SCF) This repository contains the PyTorch implementation of Sphere Confidence Face (SCF) proposed in the CVPR2021 paper: Shen

Maths 70 Dec 09, 2022
Text and code for the forthcoming second edition of Think Bayes, by Allen Downey.

Think Bayes 2 by Allen B. Downey The HTML version of this book is here. Think Bayes is an introduction to Bayesian statistics using computational meth

Allen Downey 1.5k Jan 08, 2023