PyTorch implementation for the Neuro-Symbolic Sudoku Solver leveraging the power of Neural Logic Machines (NLM)

Overview

Neuro-Symbolic Sudoku Solver

PyTorch implementation for the Neuro-Symbolic Sudoku Solver leveraging the power of Neural Logic Machines (NLM). Please note that this is not an officially supported Google product. This project is a direct application of work done as part of original NLM project. We have applied NLM concept to solve more complex (Solving Sudoku) problems.

Star us on GitHub — it helps!

Neural Logic Machine (NLM) is a neural-symbolic architecture for both inductive learning and logic reasoning. NLMs use tensors to represent logic predicates. This is done by grounding the predicate as True or False over a fixed set of objects. Based on the tensor representation, rules are implemented as neural operators that can be applied over the premise tensors and generate conclusion tensors. Learn more about NLM from the paper.

Predicate Logic

We have used below boolean predicates as inputs to NLM architecture:

  1. isRow(r, num): Does number num present in row r inside Sudoku grid?
  2. isColumn(c, num): Does number num present in column c inside Sudoku grid?
  3. isSubMat(r, c, num): Does number num present in 3x3 sub-matrix starting with row r and column c.

Note here that isRow and isColumn are binary predicates and isSubMat is ternary predicate. We have stacked the results of isRow and isColumn and inputted as binary predicate.

The core architecture of the model contains deep reinforcement learning leveraging representation power of first order logic predicates.

Prerequisites

  • Python 3.x
  • PyTorch 0.4.0
  • Jacinle. We use the version ed90c3a for this repo.
  • Other required python packages specified by requirements.txt. See the Installation.

Installation

Clone this repository:

git clone https://github.com/ashutosh1919/neuro-symbolic-sudoku-solver.git --recursive

Install Jacinle included as a submodule. You need to add the bin path to your global PATH environment variable:

export PATH=
   
    /third_party/Jacinle/bin:$PATH

   

Create a conda environment for NLM, and install the requirements. This includes the required python packages from both Jacinle and NLM. Most of the required packages have been included in the built-in anaconda package:

conda create -n nlm anaconda
conda install pytorch torchvision -c pytorch

Usage

This repo is extension of original NLM repository. We haven't removed the codebase of problems solved in the base repository but we are only maintaining the Sudoku codebase in this repository.

Below is the file structure for the code we have added to original repository to understand things better.

The code in difflogic/envs/sudoku contains information about the environment for reinforcement learning. grid.py selects dataset randomly from 1 Million Sudoku Dataset from Kaggle. grid_env.py creates reinforcement learning environment which can perform actions.

The code in scripts/sudoku/learn_policy.py trains the model whereas scripts/sudoku/inference.py generates prediction from trained model.

We also provide pre-trained models for 3 decision-making tasks in models directory,

Taking the Sudoku task as an example.

# To train the model:
$ jac-run scripts/sudoku/learn_policy.py --task sudoku --dump-dir models

# To infer the model:
$ jac-run scripts/sudoku/inference.py --task sudoku --load-checkpoint models/checkpoints/checkpoint_10.pth

Below is the sample output that you should get after running inference.py where the program will generate a problem Sudoku grid and NLM model will solve it.

We have trained model with tuning with different parameters and we got below results.

Contributors

Thanks goes to these wonderful people (emoji key):


Ashutosh Hathidara

💻 🤔 🚧 🎨 📖 💬 🔬

pandeylalit9

💻 🤔 🎨 🚧 🔬 📖 💬

This project follows the all-contributors specification. Contributions of any kind welcome!

References

Owner
Ashutosh Hathidara
A passionate individual who always thrive to work on end to end products which develop sustainable and scalable social and technical systems to create impact.
Ashutosh Hathidara
A hyperparameter optimization framework

Optuna: A hyperparameter optimization framework Website | Docs | Install Guide | Tutorial Optuna is an automatic hyperparameter optimization software

7.4k Jan 04, 2023
Exploration of some patients clinical variables.

Answer_ALS_clinical_data Exploration of some patients clinical variables. All the clinical / metadata data is available here: https://data.answerals.o

1 Jan 20, 2022
A tiny, pedagogical neural network library with a pytorch-like API.

candl A tiny, pedagogical implementation of a neural network library with a pytorch-like API. The primary use of this library is for education. Use th

Sri Pranav 3 May 23, 2022
Face Recognition & AI Based Smart Attendance Monitoring System.

In today’s generation, authentication is one of the biggest problems in our society. So, one of the most known techniques used for authentication is h

Sagar Saha 1 Jan 14, 2022
Code for the paper "Adapting Monolingual Models: Data can be Scarce when Language Similarity is High"

Wietse de Vries • Martijn Bartelds • Malvina Nissim • Martijn Wieling Adapting Monolingual Models: Data can be Scarce when Language Similarity is High

Wietse de Vries 5 Aug 02, 2021
Benchmark VAE - Library for Variational Autoencoder benchmarking

Documentation pythae This library implements some of the most common (Variational) Autoencoder models. In particular it provides the possibility to pe

1.1k Jan 02, 2023
Deploying PyTorch Model to Production with FastAPI in CUDA-supported Docker

Deploying PyTorch Model to Production with FastAPI in CUDA-supported Docker A example FastAPI PyTorch Model deploy with nvidia/cuda base docker. Model

Ming 68 Jan 04, 2023
IOT: Instance-wise Layer Reordering for Transformer Structures

Introduction This repository contains the code for Instance-wise Ordered Transformer (IOT), which is introduced in the ICLR2021 paper IOT: Instance-wi

IOT 19 Nov 15, 2022
A Distributional Approach To Controlled Text Generation

A Distributional Approach To Controlled Text Generation This is the repository code for the ICLR 2021 paper "A Distributional Approach to Controlled T

NAVER 102 Jan 07, 2023
DeepGNN is a framework for training machine learning models on large scale graph data.

DeepGNN Overview DeepGNN is a framework for training machine learning models on large scale graph data. DeepGNN contains all the necessary features in

Microsoft 45 Jan 01, 2023
Image Matching Evaluation

Image Matching Evaluation (IME) IME provides to test any feature matching algorithm on datasets containing ground-truth homographies. Also, one can re

32 Nov 17, 2022
Personal thermal comfort models using digital twins: Preference prediction with BIM-extracted spatial-temporal proximity data from Build2Vec

Personal thermal comfort models using digital twins: Preference prediction with BIM-extracted spatial-temporal proximity data from Build2Vec This repo

Building and Urban Data Science (BUDS) Group 5 Dec 02, 2022
A set of tools for converting a darknet dataset to COCO format working with YOLOX

darknet格式数据→COCO darknet训练数据目录结构(详情参见dataset/darknet): darknet ├── class.names ├── gen_config.data ├── gen_train.txt ├── gen_valid.txt └── images

RapidAI-NG 148 Jan 03, 2023
This repository contains the code for the paper ``Identifiable VAEs via Sparse Decoding''.

Sparse VAE This repository contains the code for the paper ``Identifiable VAEs via Sparse Decoding''. Data Sources The datasets used in this paper wer

Gemma Moran 17 Dec 12, 2022
A method to perform unsupervised cross-region adaptation of crop classifiers trained with satellite image time series.

TimeMatch Official source code of TimeMatch: Unsupervised Cross-region Adaptation by Temporal Shift Estimation by Joachim Nyborg, Charlotte Pelletier,

Joachim Nyborg 17 Nov 01, 2022
Learning the Beauty in Songs: Neural Singing Voice Beautifier; ACL 2022 (Main conference); Official code

Learning the Beauty in Songs: Neural Singing Voice Beautifier Jinglin Liu, Chengxi Li, Yi Ren, Zhiying Zhu, Zhou Zhao Zhejiang University ACL 2022 Mai

Jinglin Liu 257 Dec 30, 2022
Notebooks em Python para Métodos Eletromagnéticos

GeoSci Labs This is a repository of code used to power the notebooks and interactive examples for https://em.geosci.xyz and https://gpg.geosci.xyz. Th

Victor Cezar Tocantins 1 Nov 16, 2021
PyTorch Implementation of Backbone of PicoDet

PicoDet-Backbone PyTorch Implementation of Backbone of PicoDet Original Implementation is implemented on PaddlePaddle. Example picodet_l_backbone = ES

Yonghye Kwon 7 Jul 12, 2022
Semantic Segmentation Suite in TensorFlow

Semantic Segmentation Suite in TensorFlow. Implement, train, and test new Semantic Segmentation models easily!

George Seif 2.5k Jan 06, 2023