4D Human Body Capture from Egocentric Video via 3D Scene Grounding

Overview

4D Human Body Capture from Egocentric Video via 3D Scene Grounding

[Project] [Paper]

Installation:

Our method requires the same dependencies as SMPLify-X and OpenPose. We refer to the official implementation fo SMPLify-X and OpenPose for installation details.

Our method also needs the installation of Chamfer Pytorch to calculate the chamfer distnace for enforceing human-scene constraints

Data Preparation:

Step 1: Dump video frames with desired fps (30) with utils/dump_videos.py. Run utils/split_frames to segment videos into equally long subatom clips. Repack frames to videos with utils/pack_videos.py (This is for faster openpose I/O).

Step 2: Run openpose_call.py under openpose folder to get human body keypoints, then run utils/openpose_helper to rename keypoint.json and run utils/openpose_filter.py to keep the most confident human keypoints.

Step 3: Run Smplify-X model with specified focal length and data directory. This step may take up to several hours. For instance:

python3 smplifyx/main.py --config cfg_files/fit_smplx.yaml  --data_folder /home/miao/data/rylm/downsampled_frames/miao_mainbuilding_0-1 --output_folder /home/miao/data/rylm/downsampled_frames/miao_mainbuilding_0-1/body_gen --visualize="False" --model_folder ./models --vposer_ckpt ./vposer --part_segm_fn smplx_parts_segm.pkl --focal_length 694.0

Step 4: Run Colmap for to generate scene mesh and camera trajectory. This step make take up to several hours depneding on the complexity of the scene. Then Run utils/camerpose_helper and utils/pointscloud_helper.py to generate desired points cloud file and camera pose.

Joint Optimization with 3D Scene Context:

Run global_optimization.py to conduct temproal smoothing and enforce human-scene constraints:

python3 global_optimization.py '/home/miao/data/rylm/packed_data/miao_mainbuidling_0-1/body_gen' '/home/miao/data/rylm/packed_data/miao_mainbuidling_0-1/smoothed_body

The resulting data should be organized as following:

  • datafolder:
    • videoname:
      • images: folder that contains all video frames
      • keypoints: folder that contains all body keypoints
      • body_gen: folder that contains all body mesh files:
      • smoothed_boyd: folder that contains all jointly-optimized body mesh files:
      • camera_pose.txt: text file that contains camera pose at each temporal footprint
      • meshed-poisson.ply: scene mesh file from dense reconstruction
      • camera.txt: text file that contains camera parameters
      • xyz.ply point cloud file. (use meash lab to convert .xyz file to .ply file)

Visualization in the World Coordinate:

Run global_vis.py to transform the body mesh in pivot coordinate to world coordinate. By default the viewpoint of open3d is the initial position camera trajectory. Setting bool flag to 'True' will resulting into a open3d viewpoint moving the same way as camera viewer.

python3 global_vis.py '/home/miao/data/rylm/downsampled_frames/miao_mainbuilding_0-1/' False

Visualization in the Egocentric Coordinate:

Run vis.py to view recosntrcuted body mesh on image plane.

python3 vis.py '/home/miao/data/rylm/segmented_data/miao_mainbuilding_0-1/'

Citation

If you find our code useful in your research, please use the following BibTeX entry for citation.

@inproceedings{liu20204d,
  title={4D Human Body Capture from Egocentric Video via 3D Scene Grounding},
  author={Liu, Miao and Yang, Dexin and Zhang, Yan and Cui, Zhaopeng and Rehg, James M and Tang, Siyu},
  booktitle={3DV},
  year={2021}
}
Owner
Miao Liu
Miao Liu
Aws-machine-learning-university-accelerated-tab - Machine Learning University: Accelerated Tabular Data Class

Machine Learning University: Accelerated Tabular Data Class This repository contains slides, notebooks, and datasets for the Machine Learning Universi

AWS Samples 916 Dec 23, 2022
A PyTorch implementation for PyramidNets (Deep Pyramidal Residual Networks)

A PyTorch implementation for PyramidNets (Deep Pyramidal Residual Networks) This repository contains a PyTorch implementation for the paper: Deep Pyra

Greg Dongyoon Han 262 Jan 03, 2023
The official homepage of the COCO-Stuff dataset.

The COCO-Stuff dataset Holger Caesar, Jasper Uijlings, Vittorio Ferrari Welcome to official homepage of the COCO-Stuff [1] dataset. COCO-Stuff augment

Holger Caesar 715 Dec 31, 2022
CLIP (Contrastive Language–Image Pre-training) trained on Indonesian data

CLIP-Indonesian CLIP (Radford et al., 2021) is a multimodal model that can connect images and text by training a vision encoder and a text encoder joi

Galuh 17 Mar 10, 2022
Paper Title: Heterogeneous Knowledge Distillation for Simultaneous Infrared-Visible Image Fusion and Super-Resolution

HKDnet Paper Title: "Heterogeneous Knowledge Distillation for Simultaneous Infrared-Visible Image Fusion and Super-Resolution" Email:

wasteland 11 Nov 12, 2022
This repository provides an efficient PyTorch-based library for training deep models.

s3sec Test AWS S3 buckets for read/write/delete access This tool was developed to quickly test a list of s3 buckets for public read, write and delete

Bytedance Inc. 123 Jan 05, 2023
State-Relabeling Adversarial Active Learning

State-Relabeling Adversarial Active Learning Code for SRAAL [2020 CVPR Oral] Requirements torch = 1.6.0 numpy = 1.19.1 tqdm = 4.31.1 AL Results The

10 Jul 14, 2022
Convert weight file.pth to weight file.blob

CONVERT YOUR MODEL TO IR FORMAT INSTALLATION OpenVino Toolkit Download openvinotoolkit 2021.3 version : Link Instruction of installation : Link Pytorc

Tran Anh Tuan 3 Nov 18, 2021
Convert Apple NeuralHash model for CSAM Detection to ONNX.

Apple NeuralHash is a perceptual hashing method for images based on neural networks. It can tolerate image resize and compression.

Asuhariet Ygvar 1.5k Dec 31, 2022
Reading list for research topics in Masked Image Modeling

awesome-MIM Reading list for research topics in Masked Image Modeling(MIM). We list the most popular methods for MIM, if I missed something, please su

ligang 231 Dec 07, 2022
This program writes christmas wish programmatically. It is using turtle as a pen pointer draw christmas trees and stars.

Introduction This is a simple program is written in python and turtle library. The objective of this program is to wish merry Christmas programmatical

Gunarakulan Gunaretnam 1 Dec 25, 2021
Numerai tournament example scripts using NN and optuna

numerai_NN_example Numerai tournament example scripts using pytorch NN, lightGBM and optuna https://numer.ai/tournament Performance of my model based

Takahiro Maeda 12 Oct 10, 2022
Implementation of ICLR 2020 paper "Revisiting Self-Training for Neural Sequence Generation"

Self-Training for Neural Sequence Generation This repo includes instructions for running noisy self-training algorithms from the following paper: Revi

Junxian He 45 Dec 31, 2022
Deep Reinforcement Learning based autonomous navigation for quadcopters using PPO algorithm.

PPO-based Autonomous Navigation for Quadcopters This repository contains an implementation of Proximal Policy Optimization (PPO) for autonomous naviga

Bilal Kabas 16 Nov 11, 2022
A platform to display the carbon neutralization information for researchers, decision-makers, and other participants in the community.

Welcome to Carbon Insight Carbon Insight is a platform aiming to display the carbon neutralization roadmap for researchers, decision-makers, and other

Microsoft 14 Oct 24, 2022
Implementation of BI-RADS-BERT & The Advantages of Section Tokenization.

BI-RADS BERT Implementation of BI-RADS-BERT & The Advantages of Section Tokenization. This implementation could be used on other radiology in house co

1 May 17, 2022
PyTorch implementation of GLOM

GLOM PyTorch implementation of GLOM, Geoffrey Hinton's new idea that integrates concepts from neural fields, top-down-bottom-up processing, and attent

Yeonwoo Sung 20 Aug 17, 2022
Learning Temporal Consistency for Low Light Video Enhancement from Single Images (CVPR2021)

StableLLVE This is a Pytorch implementation of "Learning Temporal Consistency for Low Light Video Enhancement from Single Images" in CVPR 2021, by Fan

99 Dec 19, 2022
This repository contains the map content ontology used in narrative cartography

Narrative-cartography-ontology This repository contains the map content ontology used in narrative cartography, which is associated with a submission

Weiming Huang 0 Oct 31, 2021
Additional environments compatible with OpenAI gym

Decentralized Control of Quadrotor Swarms with End-to-end Deep Reinforcement Learning A codebase for training reinforcement learning policies for quad

Zhehui Huang 40 Dec 06, 2022