[ICCV 2021] Our work presents a novel neural rendering approach that can efficiently reconstruct geometric and neural radiance fields for view synthesis.

Overview

MVSNeRF

Project page | Paper

This repository contains a pytorch lightning implementation for the ICCV 2021 paper: MVSNeRF: Fast Generalizable Radiance Field Reconstruction from Multi-View Stereo. Our work present a novel neural rendering approach that can efficiently reconstruct geometric and neural radiance fields for view synthesis, Moreover, if dense images are captured, our estimated radiance field representation can be easily fine-tuned; this leads to fast per-scene reconstruction.

Pipeline

Installation

Tested on Ubuntu 16.04 + Pytorch 1.8 + Pytorch Lignting 1.3.5

Install environment:

pip install pytorch-lightning, inplace_abn
pip install imageio, pillow, scikit-image, opencv-python, config-argparse, lpips

Training

Please see each subsection for training on different datasets. Available training datasets:

DTU dataset

Data download

Download the preprocessed DTU training data and Depth_raw from original MVSNet repo and unzip. We provide a DTU example, please follow with the example's folder structure.

Training model

Run

CUDA_VISIBLE_DEVICES=$cuda  python train_mvs_nerf_pl.py \
   --expname $exp_name
   --num_epochs 6
   --use_viewdirs \
   --dataset_name dtu \
   --datadir $DTU_DIR

More options refer to the opt.py, training command example:

CUDA_VISIBLE_DEVICES=0  python train_mvs_nerf_pl.py
    --with_depth  --imgScale_test 1.0 \
    --expname mvs-nerf-is-all-your-need \
    --num_epochs 6 --N_samples 128 --use_viewdirs --batch_size 1024 \
    --dataset_name dtu \
    --datadir path/to/dtu/data \
    --N_vis 6

You may need to add --with_depth if you want to quantity depth during training. --N_vis denotes the validation frequency. --imgScale_test is the downsample ratio during validation, like 0.5. The training process takes about 30h on single RTX 2080Ti for 6 epochs.

Important: please always set batch_size to 1 when you are trining a genelize model, you can enlarge it when fine-tuning.

Checkpoint: a pre-trained checkpint is included in ckpts/mvsnerf-v0.tar.

Evaluation: We also provide a rendering and quantity scipt in renderer.ipynb, and you can also use the run_batch.py if you want to testing or finetuning on different dataset. More results can be found from Here, please check your configuration if your rendering result looks absnormal.

Rendering from the trained model should have result like this:

no-finetuned

Finetuning

Blender

Steps

Data download

Download nerf_synthetic.zip from here

CUDA_VISIBLE_DEVICES=0  python train_mvs_nerf_finetuning_pl.py  \
    --dataset_name blender --datadir /path/to/nerf_synthetic/lego \
    --expname lego-ft  --with_rgb_loss  --batch_size 1024  \
    --num_epochs 1 --imgScale_test 1.0 --white_bkgd  --pad 0 \
    --ckpt ./ckpts/mvsnerf-v0.tar --N_vis 1

LLFF

Steps

Data download

Download nerf_llff_data.zip from here

CUDA_VISIBLE_DEVICES=0  python train_mvs_nerf_finetuning_pl.py  \
    --dataset_name llff --datadir /path/to/nerf_llff_data/{scene_name} \
    --expname horns-ft  --with_rgb_loss  --batch_size 1024  \
    --num_epochs 1 --imgScale_test 1.0  --pad 24 \
    --ckpt ./ckpts/mvsnerf-v0.tar --N_vis 1

DTU

Steps
CUDA_VISIBLE_DEVICES=0  python train_mvs_nerf_finetuning_pl.py  \
    --dataset_name dtu_ft --datadir /path/to/DTU/mvs_training/dtu/scan1 \
    --expname scan1-ft  --with_rgb_loss  --batch_size 1024  \
    --num_epochs 1 --imgScale_test 1.0   --pad 24 \
    --ckpt ./ckpts/mvsnerf-v0.tar --N_vis 1

Rendering

After training or finetuning, you can render free-viewpoint videos with the renderer-video.ipynb. if you want to use your own data, please using the right hand coordinate system (intrinsic, nearfar and extrinsic either with camera to world or world to camera in opencv format) and modify the rendering scipts.

After 10k iterations (~ 15min), you should have videos like this:

finetuned

Citation

If you find our code or paper helps, please consider citing:

@article{chen2021mvsnerf,
  title={MVSNeRF: Fast Generalizable Radiance Field Reconstruction from Multi-View Stereo},
  author={Chen, Anpei and Xu, Zexiang and Zhao, Fuqiang and Zhang, Xiaoshuai and Xiang, Fanbo and Yu, Jingyi and Su, Hao},
  journal={arXiv preprint arXiv:2103.15595},
  year={2021}
}

Big thanks to CasMVSNet_pl, our code is partially borrowing from them.

Relevant Works

MVSNet: Depth Inference for Unstructured Multi-view Stereo (ECCV 2018)
Yao Yao, Zixin Luo, Shiwei Li, Tian Fang, Long Quan

Cascade Cost Volume for High-Resolution Multi-View Stereo and Stereo Matching (CVPR 2020)
Xiaodong Gu, Zhiwen Fan, Zuozhuo Dai, Siyu Zhu, Feitong Tan, Ping Tan

NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis (ECCV 2020)
Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, Ren Ng

IBRNet: Learning Multi-View Image-Based Rendering (CVPR 2021)
Qianqian Wang, Zhicheng Wang, Kyle Genova, Pratul Srinivasan, Howard Zhou, Jonathan T. Barron, Ricardo Martin-Brualla, Noah Snavely, Thomas Funkhouser

PixelNeRF: Neural Radiance Fields from One or Few Images (CVPR 2021)
Alex Yu, Vickie Ye, Matthew Tancik, Angjoo Kanazawa

Owner
Anpei Chen
Anpei Chen
GestureSSD CBAM - A gesture recognition web system based on SSD and CBAM, using pytorch, flask and node.js

GestureSSD_CBAM A gesture recognition web system based on SSD and CBAM, using pytorch, flask and node.js SSD implementation is based on https://github

xue_senhua1999 2 Jan 06, 2022
This is the repository for our paper SimpleTrack: Understanding and Rethinking 3D Multi-object Tracking

SimpleTrack This is the repository for our paper SimpleTrack: Understanding and Rethinking 3D Multi-object Tracking. We are still working on writing t

TuSimple 189 Dec 26, 2022
TC-GNN with Pytorch integration

TC-GNN (Running Sparse GNN on Dense Tensor Core on Ampere GPU) Cite this project and paper. @inproceedings{TC-GNN, title={TC-GNN: Accelerating Spars

YUKE WANG 19 Dec 01, 2022
Neural style transfer in PyTorch.

style-transfer-pytorch An implementation of neural style transfer (A Neural Algorithm of Artistic Style) in PyTorch, supporting CPUs and Nvidia GPUs.

Katherine Crowson 395 Jan 06, 2023
GoodNews Everyone! Context driven entity aware captioning for news images

This is the code for a CVPR 2019 paper, called GoodNews Everyone! Context driven entity aware captioning for news images. Enjoy! Model preview: Huge T

117 Dec 19, 2022
Applications using the GTN library and code to reproduce experiments in "Differentiable Weighted Finite-State Transducers"

gtn_applications An applications library using GTN. Current examples include: Offline handwriting recognition Automatic speech recognition Installing

Facebook Research 68 Dec 29, 2022
RipsNet: a general architecture for fast and robust estimation of the persistent homology of point clouds

RipsNet: a general architecture for fast and robust estimation of the persistent homology of point clouds This repository contains the code asscoiated

Felix Hensel 14 Dec 12, 2022
QT Py Media Knob using rotary encoder & neopixel ring

QTPy-Knob QT Py USB Media Knob using rotary encoder & neopixel ring The QTPy-Knob features: Media knob for volume up/down/mute with "qtpy-knob.py" Cir

Tod E. Kurt 56 Dec 30, 2022
The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic Neural Rendering"

The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic Neural Rendering"

Ren Yurui 261 Jan 09, 2023
Dataset used in "PlantDoc: A Dataset for Visual Plant Disease Detection" accepted in CODS-COMAD 2020

PlantDoc: A Dataset for Visual Plant Disease Detection This repository contains the Cropped-PlantDoc dataset used for benchmarking classification mode

Pratik Kayal 109 Dec 29, 2022
Code for the paper "Learning-Augmented Algorithms for Online Steiner Tree"

Learning-Augmented Algorithms for Online Steiner Tree This is the code for the paper "Learning-Augmented Algorithms for Online Steiner Tree". Requirem

0 Dec 09, 2021
This repository contains a Ruby API for utilizing TensorFlow.

tensorflow.rb Description This repository contains a Ruby API for utilizing TensorFlow. Linux CPU Linux GPU PIP Mac OS CPU Not Configured Not Configur

somatic labs 825 Dec 26, 2022
Spatial Sparse Convolution Library

SpConv: Spatially Sparse Convolution Library PyPI Install Downloads CPU (Linux Only) pip install spconv CUDA 10.2 pip install spconv-cu102 CUDA 11.1 p

Yan Yan 1.2k Jan 07, 2023
Machine Learning Toolkit for Kubernetes

Kubeflow the cloud-native platform for machine learning operations - pipelines, training and deployment. Documentation Please refer to the official do

Kubeflow 12.1k Jan 03, 2023
PyTorch/TorchScript compiler for NVIDIA GPUs using TensorRT

PyTorch/TorchScript compiler for NVIDIA GPUs using TensorRT

NVIDIA Corporation 1.8k Dec 30, 2022
Fashion Landmark Estimation with HRNet

HRNet for Fashion Landmark Estimation (Modified from deep-high-resolution-net.pytorch) Introduction This code applies the HRNet (Deep High-Resolution

SVIP Lab 91 Dec 26, 2022
This repository contains pre-trained models and some evaluation code for our paper Towards Unsupervised Dense Information Retrieval with Contrastive Learning

Contriever: Towards Unsupervised Dense Information Retrieval with Contrastive Learning This repository contains pre-trained models and some evaluation

Meta Research 207 Jan 08, 2023
This is the repository for Learning to Generate Piano Music With Sustain Pedals

SusPedal-Gen This is the official repository of Learning to Generate Piano Music With Sustain Pedals Demo Page Dataset The dataset used in this projec

Joann Ching 12 Sep 02, 2022
MEND: Model Editing Networks using Gradient Decomposition

MEND: Model Editing Networks using Gradient Decomposition Setup Environment This codebase uses Python 3.7.9. Other versions may work as well. Create a

Eric Mitchell 141 Dec 02, 2022
Repo for paper "Dynamic Placement of Rapidly Deployable Mobile Sensor Robots Using Machine Learning and Expected Value of Information"

Repo for paper "Dynamic Placement of Rapidly Deployable Mobile Sensor Robots Using Machine Learning and Expected Value of Information" Notes I probabl

Berkeley Expert System Technologies Lab 0 Jul 01, 2021