[ICCV 2021] Our work presents a novel neural rendering approach that can efficiently reconstruct geometric and neural radiance fields for view synthesis.

Overview

MVSNeRF

Project page | Paper

This repository contains a pytorch lightning implementation for the ICCV 2021 paper: MVSNeRF: Fast Generalizable Radiance Field Reconstruction from Multi-View Stereo. Our work present a novel neural rendering approach that can efficiently reconstruct geometric and neural radiance fields for view synthesis, Moreover, if dense images are captured, our estimated radiance field representation can be easily fine-tuned; this leads to fast per-scene reconstruction.

Pipeline

Installation

Tested on Ubuntu 16.04 + Pytorch 1.8 + Pytorch Lignting 1.3.5

Install environment:

pip install pytorch-lightning, inplace_abn
pip install imageio, pillow, scikit-image, opencv-python, config-argparse, lpips

Training

Please see each subsection for training on different datasets. Available training datasets:

DTU dataset

Data download

Download the preprocessed DTU training data and Depth_raw from original MVSNet repo and unzip. We provide a DTU example, please follow with the example's folder structure.

Training model

Run

CUDA_VISIBLE_DEVICES=$cuda  python train_mvs_nerf_pl.py \
   --expname $exp_name
   --num_epochs 6
   --use_viewdirs \
   --dataset_name dtu \
   --datadir $DTU_DIR

More options refer to the opt.py, training command example:

CUDA_VISIBLE_DEVICES=0  python train_mvs_nerf_pl.py
    --with_depth  --imgScale_test 1.0 \
    --expname mvs-nerf-is-all-your-need \
    --num_epochs 6 --N_samples 128 --use_viewdirs --batch_size 1024 \
    --dataset_name dtu \
    --datadir path/to/dtu/data \
    --N_vis 6

You may need to add --with_depth if you want to quantity depth during training. --N_vis denotes the validation frequency. --imgScale_test is the downsample ratio during validation, like 0.5. The training process takes about 30h on single RTX 2080Ti for 6 epochs.

Important: please always set batch_size to 1 when you are trining a genelize model, you can enlarge it when fine-tuning.

Checkpoint: a pre-trained checkpint is included in ckpts/mvsnerf-v0.tar.

Evaluation: We also provide a rendering and quantity scipt in renderer.ipynb, and you can also use the run_batch.py if you want to testing or finetuning on different dataset. More results can be found from Here, please check your configuration if your rendering result looks absnormal.

Rendering from the trained model should have result like this:

no-finetuned

Finetuning

Blender

Steps

Data download

Download nerf_synthetic.zip from here

CUDA_VISIBLE_DEVICES=0  python train_mvs_nerf_finetuning_pl.py  \
    --dataset_name blender --datadir /path/to/nerf_synthetic/lego \
    --expname lego-ft  --with_rgb_loss  --batch_size 1024  \
    --num_epochs 1 --imgScale_test 1.0 --white_bkgd  --pad 0 \
    --ckpt ./ckpts/mvsnerf-v0.tar --N_vis 1

LLFF

Steps

Data download

Download nerf_llff_data.zip from here

CUDA_VISIBLE_DEVICES=0  python train_mvs_nerf_finetuning_pl.py  \
    --dataset_name llff --datadir /path/to/nerf_llff_data/{scene_name} \
    --expname horns-ft  --with_rgb_loss  --batch_size 1024  \
    --num_epochs 1 --imgScale_test 1.0  --pad 24 \
    --ckpt ./ckpts/mvsnerf-v0.tar --N_vis 1

DTU

Steps
CUDA_VISIBLE_DEVICES=0  python train_mvs_nerf_finetuning_pl.py  \
    --dataset_name dtu_ft --datadir /path/to/DTU/mvs_training/dtu/scan1 \
    --expname scan1-ft  --with_rgb_loss  --batch_size 1024  \
    --num_epochs 1 --imgScale_test 1.0   --pad 24 \
    --ckpt ./ckpts/mvsnerf-v0.tar --N_vis 1

Rendering

After training or finetuning, you can render free-viewpoint videos with the renderer-video.ipynb. if you want to use your own data, please using the right hand coordinate system (intrinsic, nearfar and extrinsic either with camera to world or world to camera in opencv format) and modify the rendering scipts.

After 10k iterations (~ 15min), you should have videos like this:

finetuned

Citation

If you find our code or paper helps, please consider citing:

@article{chen2021mvsnerf,
  title={MVSNeRF: Fast Generalizable Radiance Field Reconstruction from Multi-View Stereo},
  author={Chen, Anpei and Xu, Zexiang and Zhao, Fuqiang and Zhang, Xiaoshuai and Xiang, Fanbo and Yu, Jingyi and Su, Hao},
  journal={arXiv preprint arXiv:2103.15595},
  year={2021}
}

Big thanks to CasMVSNet_pl, our code is partially borrowing from them.

Relevant Works

MVSNet: Depth Inference for Unstructured Multi-view Stereo (ECCV 2018)
Yao Yao, Zixin Luo, Shiwei Li, Tian Fang, Long Quan

Cascade Cost Volume for High-Resolution Multi-View Stereo and Stereo Matching (CVPR 2020)
Xiaodong Gu, Zhiwen Fan, Zuozhuo Dai, Siyu Zhu, Feitong Tan, Ping Tan

NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis (ECCV 2020)
Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, Ren Ng

IBRNet: Learning Multi-View Image-Based Rendering (CVPR 2021)
Qianqian Wang, Zhicheng Wang, Kyle Genova, Pratul Srinivasan, Howard Zhou, Jonathan T. Barron, Ricardo Martin-Brualla, Noah Snavely, Thomas Funkhouser

PixelNeRF: Neural Radiance Fields from One or Few Images (CVPR 2021)
Alex Yu, Vickie Ye, Matthew Tancik, Angjoo Kanazawa

Owner
Anpei Chen
Anpei Chen
Multi-Glimpse Network With Python

Multi-Glimpse Network Our code requires Python ≥ 3.8 Installation For example, venv + pip: $ python3 -m venv env $ source env/bin/activate (env) $ pyt

9 May 10, 2022
DeepFaceEditing: Deep Face Generation and Editing with Disentangled Geometry and Appearance Control

DeepFaceEditing: Deep Face Generation and Editing with Disentangled Geometry and Appearance Control One version of our system is implemented using the

260 Nov 28, 2022
MNE: Magnetoencephalography (MEG) and Electroencephalography (EEG) in Python

MNE-Python MNE-Python software is an open-source Python package for exploring, visualizing, and analyzing human neurophysiological data such as MEG, E

MNE tools for MEG and EEG data analysis 2.1k Dec 28, 2022
Chinese named entity recognization with BiLSTM using Keras

Chinese named entity recognization (Bilstm with Keras) Project Structure ./ ├── README.md ├── data │   ├── README.md │   ├── data 数据集 │   │   ├─

1 Dec 17, 2021
An implementation of shampoo

shampoo.pytorch An implementation of shampoo, proposed in Shampoo : Preconditioned Stochastic Tensor Optimization by Vineet Gupta, Tomer Koren and Yor

Ryuichiro Hataya 69 Sep 10, 2022
PyTorch implementation of Memory-based semantic segmentation for off-road unstructured natural environments.

MemSeg: Memory-based semantic segmentation for off-road unstructured natural environments Introduction This repository is a PyTorch implementation of

11 Nov 28, 2022
The codes and related files to reproduce the results for Image Similarity Challenge Track 2.

ISC-Track2-Submission The codes and related files to reproduce the results for Image Similarity Challenge Track 2. Required dependencies To begin with

Wenhao Wang 89 Jan 02, 2023
Code for ACL 2019 Paper: "COMET: Commonsense Transformers for Automatic Knowledge Graph Construction"

To run a generation experiment (either conceptnet or atomic), follow these instructions: First Steps First clone, the repo: git clone https://github.c

Antoine Bosselut 575 Jan 01, 2023
A keras-based real-time model for medical image segmentation (CFPNet-M)

CFPNet-M: A Light-Weight Encoder-Decoder Based Network for Multimodal Biomedical Image Real-Time Segmentation This repository contains the implementat

268 Nov 27, 2022
Vision-Language Transformer and Query Generation for Referring Segmentation (ICCV 2021)

Vision-Language Transformer and Query Generation for Referring Segmentation Please consider citing our paper in your publications if the project helps

Henghui Ding 143 Dec 23, 2022
Code for "My(o) Armband Leaks Passwords: An EMG and IMU Based Keylogging Side-Channel Attack" paper

Myo Keylogging This is the source code for our paper My(o) Armband Leaks Passwords: An EMG and IMU Based Keylogging Side-Channel Attack by Matthias Ga

Secure Mobile Networking Lab 7 Jan 03, 2023
UniMoCo: Unsupervised, Semi-Supervised and Full-Supervised Visual Representation Learning

UniMoCo: Unsupervised, Semi-Supervised and Full-Supervised Visual Representation Learning This is the official PyTorch implementation for UniMoCo pape

dddzg 49 Jan 02, 2023
This code finds bounding box of a single human mouth.

This code finds bounding box of a single human mouth. In comparison to other face segmentation methods, it is relatively insusceptible to open mouth conditions, e.g., yawning, surgical robots, etc. T

iThermAI 4 Nov 27, 2022
Self-supervised spatio-spectro-temporal represenation learning for EEG analysis

EEG-Oriented Self-Supervised Learning and Cluster-Aware Adaptation This repository provides a tensorflow implementation of a submitted paper: EEG-Orie

Wonjun Ko 4 Jun 09, 2022
Continual Learning of Long Topic Sequences in Neural Information Retrieval

ContinualPassageRanking Repository for the paper "Continual Learning of Long Topic Sequences in Neural Information Retrieval". In this repository you

0 Apr 12, 2022
Tackling Obstacle Tower Challenge using PPO & A2C combined with ICM.

Obstacle Tower Challenge using Deep Reinforcement Learning Unity Obstacle Tower is a challenging realistic 3D, third person perspective and procedural

Zhuoyu Feng 5 Feb 10, 2022
Nodule Generation Algorithm Baseline and template code for node21 generation track

Nodule Generation Algorithm This codebase implements a simple baseline model, by following the main steps in the paper published by Litjens et al. for

node21challenge 10 Apr 21, 2022
Implementation of paper "Graph Condensation for Graph Neural Networks"

GCond A PyTorch implementation of paper "Graph Condensation for Graph Neural Networks" Code will be released soon. Stay tuned :) Abstract We propose a

Wei Jin 66 Dec 04, 2022
"SinNeRF: Training Neural Radiance Fields on Complex Scenes from a Single Image", Dejia Xu, Yifan Jiang, Peihao Wang, Zhiwen Fan, Humphrey Shi, Zhangyang Wang

SinNeRF: Training Neural Radiance Fields on Complex Scenes from a Single Image [Paper] [Website] Pipeline Code Environment pip install -r requirements

VITA 250 Jan 05, 2023