Unofficial implementation of MUSIQ (Multi-Scale Image Quality Transformer)

Related tags

Deep LearningMUSIQ
Overview

MUSIQ: Multi-Scale Image Quality Transformer

Unofficial pytorch implementation of the paper "MUSIQ: Multi-Scale Image Quality Transformer" (paper link: https://arxiv.org/abs/2108.05997)

This code doesn't exactly match what the paper describes.

  • It only works on the KonIQ-10k dataset. Or it works on the database which resolution is 1024(witdh) x 768(height).
  • Instead of using 5-layer Resnet as a backbone network, we use ResNet50 pretrained on ImageNet database.
  • We need to implement Earth Mover Distance (EMD) loss to train on other databases.
  • We additionally use ranking loss to improve the performance (we will upload the training code including ranking loss later)

The environmental settings are described below. (I cannot gaurantee if it works on other environments)

  • Pytorch=1.7.1 (with cuda 11.0)
  • einops=0.3.0
  • numpy=1.18.3
  • cv2=4.2.0
  • scipy=1.4.1
  • json=2.0.9
  • tqdm=4.45.0

Train & Validation

First, you need to download weights of ResNet50 pretrained on ImageNet database.

Second, you need to download the KonIQ-10k dataset.

  • Download the database from this website (http://database.mmsp-kn.de/koniq-10k-database.html)
  • set the database path in "train.py" (It is represented as "db_path" in "train.py")
  • Please check "koniq-10k.txt" is in "IQA_list" folder
  • "koniq-10k.txt" file includes [scene number / image name / ground truth score] information

After those settings, you can run the train & validation code by running "train.py"

  • python3 train.py (execution code)
  • This code works on single GPU. If you want to train this code in muti-gpu, you need to change this code
  • Options are all included in "train.py". So you should change the variable "config" in "train.py" image

Belows are the validation performance on KonIQ-10k database (I'm still training the code, so the results will be updated later)

  • SRCC: 0.9023 / PLCC: 0.9232 (after training 105 epochs)
  • If the codes are implemented exactly the same as the paper, the performance can be further improved

Inference

First, you need to specify variables in "inference.py"

  • dirname: root folder of test images
  • checkpoint: checkpoint file (trained on KonIQ-10k dataset)
  • result_score_txt: inference score will be saved on this txt file image

After those settings, you can run the inference code by running "inference.py"

  • python3 inference.py (execution code)

Acknolwdgements

We refer to the following website to implement the transformer (https://paul-hyun.github.io/transformer-01/)

Implementation of: "Exploring Randomly Wired Neural Networks for Image Recognition"

RandWireNN Unofficial PyTorch Implementation of: Exploring Randomly Wired Neural Networks for Image Recognition. Results Validation result on Imagenet

Seung-won Park 684 Nov 02, 2022
A voice recognition assistant similar to amazon alexa, siri and google assistant.

kenyan-Siri Build an Artificial Assistant Full tutorial (video) To watch the tutorial, click on the image below Installation For windows users (run th

Alison Parker 3 Aug 19, 2022
Pytorch implementation of BRECQ, ICLR 2021

BRECQ Pytorch implementation of BRECQ, ICLR 2021 @inproceedings{ li&gong2021brecq, title={BRECQ: Pushing the Limit of Post-Training Quantization by Bl

Yuhang Li 148 Dec 28, 2022
PyBrain - Another Python Machine Learning Library.

PyBrain -- the Python Machine Learning Library =============================================== INSTALLATION ------------ Quick answer: make sure you

2.8k Dec 31, 2022
Fully Convolutional Networks for Semantic Segmentation by Jonathan Long*, Evan Shelhamer*, and Trevor Darrell. CVPR 2015 and PAMI 2016.

Fully Convolutional Networks for Semantic Segmentation This is the reference implementation of the models and code for the fully convolutional network

Evan Shelhamer 3.2k Jan 08, 2023
Pytorch implementation for RelTransformer

RelTransformer Our Architecture This is a Pytorch implementation for RelTransformer The implementation for Evaluating on VG200 can be found here Requi

Vision CAIR Research Group, KAUST 21 Nov 22, 2022
This is the formal code implementation of the CVPR 2022 paper 'Federated Class Incremental Learning'.

Official Pytorch Implementation for GLFC [CVPR-2022] Federated Class-Incremental Learning This is the official implementation code of our paper "Feder

Race Wang 57 Dec 27, 2022
Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more

Apache MXNet (incubating) for Deep Learning Apache MXNet is a deep learning framework designed for both efficiency and flexibility. It allows you to m

The Apache Software Foundation 20.2k Jan 05, 2023
A numpy-based implementation of RANSAC for fundamental matrix and homography estimation. The degeneracy updating and local optimization components are included and optional.

Description A numpy-based implementation of RANSAC for fundamental matrix and homography estimation. The degeneracy updating and local optimization co

AoxiangFan 9 Nov 10, 2022
Assessing syntactic abilities of BERT

BERT-Syntax Assesing the syntactic abilities of BERT. What Evaluate Google's BERT-Base and BERT-Large models on the syntactic agreement datasets from

Yoav Goldberg 147 Aug 02, 2022
Automatically replace ONNX's RandomNormal node with Constant node.

onnx-remove-random-normal This is a script to replace RandomNormal node with Constant node. Example Imagine that we have something ONNX model like the

Masashi Shibata 1 Dec 11, 2021
Implementation of the paper "Shapley Explanation Networks"

Shapley Explanation Networks Implementation of the paper "Shapley Explanation Networks" at ICLR 2021. Note that this repo heavily uses the experimenta

68 Dec 27, 2022
This repository contain code on Novelty-Driven Binary Particle Swarm Optimisation for Truss Optimisation Problems.

This repository contain code on Novelty-Driven Binary Particle Swarm Optimisation for Truss Optimisation Problems. The main directory include the code

0 Dec 23, 2021
Magic tool for managing internet connection in local network by @zalexdev

Megacut ✂️ A new powerful Python3 tool for managing internet on a local network Installation git clone https://github.com/stryker-project/megacut cd m

Stryker 12 Dec 15, 2022
MAg: a simple learning-based patient-level aggregation method for detecting microsatellite instability from whole-slide images

MAg Paper Abstract File structure Dataset prepare Data description How to use MAg? Why not try the MAg_lib! Trained models Experiment and results Some

Calvin Pang 3 Apr 08, 2022
Pretraining on Dynamic Graph Neural Networks

Pretraining on Dynamic Graph Neural Networks Our article is PT-DGNN and the code is modified based on GPT-GNN Requirements python 3.6 Ubuntu 18.04.5 L

7 Dec 17, 2022
Python Multi-Agent Reinforcement Learning framework

- Please pay attention to the version of SC2 you are using for your experiments. - Performance is *not* always comparable between versions. - The re

whirl 1.3k Jan 05, 2023
Unofficial pytorch implementation of paper "One-Shot Free-View Neural Talking-Head Synthesis for Video Conferencing"

One-Shot Free-View Neural Talking Head Synthesis Unofficial pytorch implementation of paper "One-Shot Free-View Neural Talking-Head Synthesis for Vide

ZLH 406 Dec 23, 2022
Points2Surf: Learning Implicit Surfaces from Point Clouds (ECCV 2020 Spotlight)

Points2Surf: Learning Implicit Surfaces from Point Clouds (ECCV 2020 Spotlight)

Philipp Erler 329 Jan 06, 2023
Create and implement a deep learning library from scratch.

In this project, we create and implement a deep learning library from scratch. Table of Contents Deep Leaning Library Table of Contents About The Proj

Rishabh Bali 22 Aug 23, 2022