MINIROCKET: A Very Fast (Almost) Deterministic Transform for Time Series Classification

Overview

MINIROCKET

MINIROCKET: A Very Fast (Almost) Deterministic Transform for Time Series Classification

arXiv:2012.08791 (preprint)

Until recently, the most accurate methods for time series classification were limited by high computational complexity. ROCKET achieves state-of-the-art accuracy with a fraction of the computational expense of most existing methods by transforming input time series using random convolutional kernels, and using the transformed features to train a linear classifier. We reformulate ROCKET into a new method, MINIROCKET, making it up to 75 times faster on larger datasets, and making it almost deterministic (and optionally, with additional computational expense, fully deterministic), while maintaining essentially the same accuracy. Using this method, it is possible to train and test a classifier on all of 109 datasets from the UCR archive to state-of-the-art accuracy in less than 10 minutes. MINIROCKET is significantly faster than any other method of comparable accuracy (including ROCKET), and significantly more accurate than any other method of even roughly-similar computational expense. As such, we suggest that MINIROCKET should now be considered and used as the default variant of ROCKET.

Please cite as:

@article{dempster_etal_2020,
  author  = {Dempster, Angus and Schmidt, Daniel F and Webb, Geoffrey I},
  title   = {{MINIROCKET}: A Very Fast (Almost) Deterministic Transform for Time Series Classification},
  year    = {2020},
  journal = {arXiv:2012.08791}
}

sktime* / Multivariate

MINIROCKET (including a basic multivariate implementation) is also available through sktime. See the examples.

* for larger datasets (10,000+ training examples), the sktime methods should be integrated with SGD or similar as per softmax.py (replace calls to fit(...) and transform(...) from minirocket.py with calls to the relevant sktime methods as appropriate)

Results

* num_training_examples does not include the validation set of 2,048 training examples, but the transform time for the validation set is included in time_training_seconds

Requirements*

  • Python, NumPy, pandas
  • Numba (0.50+)
  • scikit-learn or similar
  • PyTorch or similar (for larger datasets)

* all pre-packaged with or otherwise available through Anaconda

Code

minirocket.py

minirocket_dv.py (MINIROCKETDV)

softmax.py (PyTorch / 10,000+ Training Examples)

minirocket_multivariate.py (equivalent to sktime/MiniRocketMultivariate)

minirocket_variable.py (variable-length input; experimental)

Important Notes

Compilation

The functions in minirocket.py and minirocket_dv.py are compiled by Numba on import, which may take some time. By default, the compiled functions are now cached, so this should only happen once (i.e., on the first import).

Input Data Type

Input data should be of type np.float32. Alternatively, you can change the Numba signatures to accept, e.g., np.float64.

Normalisation

Unlike ROCKET, MINIROCKET does not require the input time series to be normalised. (However, whether or not it makes sense to normalise the input time series may depend on your particular application.)

Examples

MINIROCKET

from minirocket import fit, transform
from sklearn.linear_model import RidgeClassifierCV

[...] # load data, etc.

# note:
# * input time series do *not* need to be normalised
# * input data should be np.float32

parameters = fit(X_training)

X_training_transform = transform(X_training, parameters)

classifier = RidgeClassifierCV(alphas = np.logspace(-3, 3, 10), normalize = True)
classifier.fit(X_training_transform, Y_training)

X_test_transform = transform(X_test, parameters)

predictions = classifier.predict(X_test_transform)

MINIROCKETDV

from minirocket_dv import fit_transform
from minirocket import transform
from sklearn.linear_model import RidgeClassifierCV

[...] # load data, etc.

# note:
# * input time series do *not* need to be normalised
# * input data should be np.float32

parameters, X_training_transform = fit_transform(X_training)

classifier = RidgeClassifierCV(alphas = np.logspace(-3, 3, 10), normalize = True)
classifier.fit(X_training_transform, Y_training)

X_test_transform = transform(X_test, parameters)

predictions = classifier.predict(X_test_transform)

PyTorch / 10,000+ Training Examples

from softmax import train, predict

model_etc = train("InsectSound_TRAIN_shuffled.csv", num_classes = 10, training_size = 22952)
# note: 22,952 = 25,000 - 2,048 (validation)

predictions, accuracy = predict("InsectSound_TEST.csv", *model_etc)

Variable-Length Input (Experimental)

from minirocket_variable import fit, transform, filter_by_length
from sklearn.linear_model import RidgeClassifierCV

[...] # load data, etc.

# note:
# * input time series do *not* need to be normalised
# * input data should be np.float32

# special instructions for variable-length input:
# * concatenate variable-length input time series into a single 1d numpy array
# * provide another 1d array with the lengths of each of the input time series
# * input data should be np.float32 (as above); lengths should be np.int32

# optionally, use a different reference length when setting dilation (default is
# the length of the longest time series), and use fit(...) with time series of
# at least this length, e.g.:
# >>> reference_length = X_training_lengths.mean()
# >>> X_training_1d_filtered, X_training_lengths_filtered = \
# >>> filter_by_length(X_training_1d, X_training_lengths, reference_length)
# >>> parameters = fit(X_training_1d_filtered, X_training_lengths_filtered, reference_length)

parameters = fit(X_training_1d, X_training_lengths)

X_training_transform = transform(X_training_1d, X_training_lengths, parameters)

classifier = RidgeClassifierCV(alphas = np.logspace(-3, 3, 10), normalize = True)
classifier.fit(X_training_transform, Y_training)

X_test_transform = transform(X_test_1d, X_test_lengths, parameters)

predictions = classifier.predict(X_test_transform)

Acknowledgements

We thank Professor Eamonn Keogh and all the people who have contributed to the UCR time series classification archive. Figures in our paper showing mean ranks were produced using code from Ismail Fawaz et al. (2019).

🚀 🚀 🚀
MinkLoc3D-SI: 3D LiDAR place recognition with sparse convolutions,spherical coordinates, and intensity

MinkLoc3D-SI: 3D LiDAR place recognition with sparse convolutions,spherical coordinates, and intensity Introduction The 3D LiDAR place recognition aim

16 Dec 08, 2022
GT China coal model

GT China coal model The full version of a China coal transport model with a very high spatial reslution. What it does The code works in a few steps: T

0 Dec 13, 2021
BasicRL: easy and fundamental codes for deep reinforcement learning。It is an improvement on rainbow-is-all-you-need and OpenAI Spinning Up.

BasicRL: easy and fundamental codes for deep reinforcement learning BasicRL is an improvement on rainbow-is-all-you-need and OpenAI Spinning Up. It is

RayYoh 12 Apr 28, 2022
Official PyTorch implementation of "Evolving Search Space for Neural Architecture Search"

Evolving Search Space for Neural Architecture Search Usage Install all required dependencies in requirements.txt and replace all ..path/..to in the co

Yuanzheng Ci 10 Oct 24, 2022
An official implementation of MobileStyleGAN in PyTorch

MobileStyleGAN: A Lightweight Convolutional Neural Network for High-Fidelity Image Synthesis Official PyTorch Implementation The accompanying videos c

Sergei Belousov 602 Jan 07, 2023
基于DouZero定制AI实战欢乐斗地主

DouZero_For_Happy_DouDiZhu: 将DouZero用于欢乐斗地主实战 本项目基于DouZero 环境配置请移步项目DouZero 模型默认为WP,更换模型请修改start.py中的模型路径 运行main.py即可 SL (baselines/sl/): 基于人类数据进行深度学习

1.5k Jan 08, 2023
Pytorch implementation of COIN, a framework for compression with implicit neural representations 🌸

COIN 🌟 This repo contains a Pytorch implementation of COIN: COmpression with Implicit Neural representations, including code to reproduce all experim

Emilien Dupont 104 Dec 14, 2022
Transport Mode detection - can detect the mode of transport with the help of features such as acceeration,jerk etc

title emoji colorFrom colorTo sdk app_file pinned Transport_Mode_Detector 🚀 purple yellow gradio app.py false Configuration title: string Display tit

Nishant Rajadhyaksha 3 Jan 16, 2022
PyTorch implementation of ''Background Activation Suppression for Weakly Supervised Object Localization''.

Background Activation Suppression for Weakly Supervised Object Localization PyTorch implementation of ''Background Activation Suppression for Weakly S

35 Jan 06, 2023
Optimizaciones incrementales al problema N-Body con el fin de evaluar y comparar las prestaciones de los traductores de Python en el ámbito de HPC.

Python HPC Optimizaciones incrementales de N-Body (all-pairs) con el fin de evaluar y comparar las prestaciones de los traductores de Python en el ámb

Andrés Milla 12 Aug 04, 2022
Using OpenAI's CLIP to upscale and enhance images

CLIP Upscaler and Enhancer Using OpenAI's CLIP to upscale and enhance images Based on nshepperd's JAX CLIP Guided Diffusion v2.4 Sample Results Viewpo

Tripp Lyons 5 Jun 14, 2022
A curated list of awesome deep long-tailed learning resources.

A curated list of awesome deep long-tailed learning resources.

vanint 210 Dec 25, 2022
HybridNets: End-to-End Perception Network

HybridNets: End2End Perception Network HybridNets Network Architecture. HybridNets: End-to-End Perception Network by Dat Vu, Bao Ngo, Hung Phan 📧 FPT

Thanh Dat Vu 370 Dec 29, 2022
WORD: Revisiting Organs Segmentation in the Whole Abdominal Region

WORD: Revisiting Organs Segmentation in the Whole Abdominal Region. This repository provides the codebase and dataset for our work WORD: Revisiting Or

Healthcare Intelligence Laboratory 71 Jan 07, 2023
Dialect classification

Dialect-Classification This repository presents the data that was used in a talk at ICKL-5 (5th International Conference on Kurdish Linguistics) at th

Kurdish-BLARK 0 Nov 12, 2021
Serverless proxy for Spark cluster

Hydrosphere Mist Hydrosphere Mist is a serverless proxy for Spark cluster. Mist provides a new functional programming framework and deployment model f

hydrosphere.io 317 Dec 01, 2022
Public repository containing materials used for Feed Forward (FF) Neural Networks article.

Art041_NN_Feed_Forward Public repository containing materials used for Feed Forward (FF) Neural Networks article. -- Illustration of a very simple Fee

SolClover 2 Dec 29, 2021
This repo is the official implementation for Multi-Scale Adaptive Graph Neural Network for Multivariate Time Series Forecasting

1 MAGNN This repo is the official implementation for Multi-Scale Adaptive Graph Neural Network for Multivariate Time Series Forecasting. 1.1 The frame

SZJ 12 Nov 08, 2022
This is the offical website for paper ''Category-consistent deep network learning for accurate vehicle logo recognition''

The Pytorch Implementation of Category-consistent deep network learning for accurate vehicle logo recognition This is the offical website for paper ''

Wanglong Lu 28 Oct 29, 2022
Deep Multi-Magnification Network for multi-class tissue segmentation of whole slide images

Deep Multi-Magnification Network This repository provides training and inference codes for Deep Multi-Magnification Network published here. Deep Multi

Computational Pathology 12 Aug 06, 2022