Kaggle G2Net Gravitational Wave Detection : 2nd place solution

Overview

Kaggle G2Net Gravitational Wave Detection : 2nd place solution

Solution writeup: https://www.kaggle.com/c/g2net-gravitational-wave-detection/discussion/275341

Instructions

1. Download data

You have to download the competition dataset from competition website, and place the files in input/ directory.

┣ input/
┃   ┣ training_labels.csv
┃   ┣ sample_submission.csv
┃   ┣ train/
┃   ┣ test/
┃
┣ configs.py
┣ ...

(Optional:) Add your hardware configurations

# configs.py
HW_CFG = {
    'RTX3090': (16, 128, 1, 24), # CPU count, RAM amount(GB), GPU count, GPU RAM(GB)
    'A100': (9, 60, 1, 40), 
    'Your config', (128, 512, 8, 40) # add your hardware config!
}

2. Setup python environment

conda

conda env create -n kumaconda -f=environment.yaml
conda activate kumaconda

docker

WIP

3. Prepare data

Two new files - input/train.csv and input/test/.csv will be created.

python prep_data.py

(Optional:) Prepare waveform cache

Optionally you can speed up training by making waveform cache.
This is not recommend if your machine has RAM size smaller than 32GB.
input/train_cache.pickle and input/test_cache.pickle will be created.

python prep_data.py --cache

Then, add cache path to Baseline class in configs.py.

# configs.py
class Baseline:
    name = 'baseline'
    seed = 2021
    train_path = INPUT_DIR/'train.csv'
    test_path = INPUT_DIR/'test.csv'
    train_cache = INPUT_DIR/'train_cache.pickle' # here
    test_cache = INPUT_DIR/'test_cache.pickle' # here
    cv = 5

4. Train nueral network

Each experiment class has a name (e.g. name for Nspec16 is nspec_16).
Outputs of an experiment are

  • outoffolds.npy : (train size, 1) np.float32
  • predictions.npy : (cv fold, test size, 1) np.float32
  • {name}_{timestamp}.log : training log
  • foldx.pt : pytorch checkpoint

All outputs will be created in results/{name}/.

python train.py --config {experiment class}
# [Options]
# --progress_bar    : Everyone loves progress bar
# --inference       : Run inference only
# --tta             : Run test time augmentations (FlipWave)
# --limit_fold x    : Train a single fold x. You must run inference again by yourself.

5. Train neural network again (pseudo-label)

For experiments with name starting with Pseudo, you must use train_pseudo.py.
Outputs and options are the same as train.py.
Make sure the dependent experiment (see the table below) was successfully run.

python train_pseudo.py --config {experiment class}

Experiments

# Experiment Dependency Frontend Backend Input size CV Public LB Private LB
1 Pseudo06 Nspec12 CWT efficientnet-b2 256 x 512 0.8779 0.8797 0.8782
2 Pseodo07 Nspec16 CWT efficientnet-b2 128 x 1024 0.87841 0.8801 0.8787
3 Pseudo12 Nspec12arch0 CWT densenet201 256 x 512 0.87762 0.8796 0.8782
4 Pseudo13 MultiInstance04 CWT xcit-tiny-p16 384 x 768 0.87794 0.8800 0.8782
5 Pseudo14 Nspec16arch17 CWT efficientnet-b7 128 x 1024 0.87957 0.8811 0.8800
6 Pseudo18 Nspec21 CWT efficientnet-b4 256 x 1024 0.87942 0.8812 0.8797
7 Pseudo10 Nspec16spec13 CWT efficientnet-b2 128 x 1024 0.87875 0.8802 0.8789
8 Pseudo15 Nspec22aug1 WaveNet efficientnet-b2 128 x 1024 0.87846 0.8809 0.8794
9 Pseudo16 Nspec22arch2 WaveNet efficientnet-b6 128 x 1024 0.87982 0.8823 0.8807
10 Pseudo19 Nspec22arch6 WaveNet densenet201 128 x 1024 0.87831 0.8818 0.8804
11 Pseudo17 Nspec23arch3 CNN efficientnet-b6 128 x 1024 0.87982 0.8823 0.8808
12 Pseudo21 Nspec22arch7 WaveNet effnetv2-m 128 x 1024 0.87861 0.8831 0.8815
13 Pseudo22 Nspec23arch5 CNN effnetv2-m 128 x 1024 0.87847 0.8817 0.8799
14 Pseudo23 Nspec22arch12 WaveNet effnetv2-l 128 x 1024 0.87901 0.8829 0.8811
15 Pseudo24 Nspec30arch2 WaveNet efficientnet-b6 128 x 1024 0.8797 0.8817 0.8805
16 Pseudo25 Nspec25arch1 WaveNet efficientnet-b3 256 x 1024 0.87948 0.8820 0.8803
17 Pseudo26 Nspec22arch10 WaveNet resnet200d 128 x 1024 0.87791 0.881 0.8797
18 PseudoSeq04 Seq03aug3 ResNet1d-18 - 0.87663 0.8804 0.8785
19 PseudoSeq07 Seq12arch4 WaveNet - 0.87698 0.8796 0.8784
20 PseudoSeq03 Seq09 DenseNet1d-121 - 0.86826 0.8723 0.8703
Owner
Hiroshechka Y
ML Engineer | Kaggle Master | Public Health
Hiroshechka Y
FishNet: One Stage to Detect, Segmentation and Pose Estimation

FishNet FishNet: One Stage to Detect, Segmentation and Pose Estimation Introduction In this project, we combine target detection, instance segmentatio

1 Oct 05, 2022
This repository contains the needed resources to build the HIRID-ICU-Benchmark dataset

HiRID-ICU-Benchmark This repository contains the needed resources to build the HIRID-ICU-Benchmark dataset for which the manuscript can be found here.

Biomedical Informatics at ETH Zurich 30 Dec 16, 2022
This repository is an implementation of paper : Improving the Training of Graph Neural Networks with Consistency Regularization

CRGNN Paper : Improving the Training of Graph Neural Networks with Consistency Regularization Environments Implementing environment: GeForce RTX™ 3090

THUDM 28 Dec 09, 2022
Semantic Segmentation in Pytorch

PyTorch Semantic Segmentation Introduction This repository is a PyTorch implementation for semantic segmentation / scene parsing. The code is easy to

Hengshuang Zhao 1.2k Jan 01, 2023
arxiv-sanity, but very lite, simply providing the core value proposition of the ability to tag arxiv papers of interest and have the program recommend similar papers.

arxiv-sanity, but very lite, simply providing the core value proposition of the ability to tag arxiv papers of interest and have the program recommend similar papers.

Andrej 671 Dec 31, 2022
Official repository of PanoAVQA: Grounded Audio-Visual Question Answering in 360° Videos (ICCV 2021)

Pano-AVQA Official repository of PanoAVQA: Grounded Audio-Visual Question Answering in 360° Videos (ICCV 2021) [Paper] [Poster] [Video] Getting Starte

Heeseung Yun 9 Dec 23, 2022
A benchmark dataset for mesh multi-label-classification based on cube engravings introduced in MeshCNN

Double Cube Engravings This script creates a dataset for multi-label mesh clasification, with an intentionally difficult setup for point cloud classif

Yotam Erel 1 Nov 30, 2021
Experiments for Operating Systems Lab (ETCS-352)

Operating Systems Lab (ETCS-352) Experiments for Operating Systems Lab (ETCS-352) performed by me in 2021 at uni. All codes are written by me except t

Deekshant Wadhwa 0 Sep 06, 2022
Cards Against Humanity AI

cah-ai This is a Cards Against Humanity AI implemented using a pre-trained Semantic Search model. How it works A player is described by a combination

Alex Nichol 2 Aug 22, 2022
Watch faces morph into each other with StyleGAN 2, StyleGAN, and DCGAN!

FaceMorpher FaceMorpher is an innovative project to get a unique face morph (or interpolation for geeks) on a website. Yes, this means you can see fac

Anish 9 Jun 24, 2022
PyTorch Implementation of Realtime Multi-Person Pose Estimation project.

PyTorch Realtime Multi-Person Pose Estimation This is a pytorch version of Realtime_Multi-Person_Pose_Estimation, origin code is here Realtime_Multi-P

Dave Fang 157 Nov 12, 2022
ONNX Runtime: cross-platform, high performance ML inferencing and training accelerator

ONNX Runtime is a cross-platform inference and training machine-learning accelerator. ONNX Runtime inference can enable faster customer experiences an

Microsoft 8k Jan 04, 2023
Curriculum Domain Adaptation for Semantic Segmentation of Urban Scenes, ICCV 2017

AdaptationSeg This is the Python reference implementation of AdaptionSeg proposed in "Curriculum Domain Adaptation for Semantic Segmentation of Urban

Yang Zhang 128 Oct 19, 2022
A curated list of long-tailed recognition resources.

Awesome Long-tailed Recognition A curated list of long-tailed recognition and related resources. Please feel free to pull requests or open an issue to

Zhiwei ZHANG 542 Jan 01, 2023
A simple baseline for 3d human pose estimation in PyTorch.

3d_pose_baseline_pytorch A PyTorch implementation of a simple baseline for 3d human pose estimation. You can check the original Tensorflow implementat

weigq 312 Jan 06, 2023
EDPN: Enhanced Deep Pyramid Network for Blurry Image Restoration

EDPN: Enhanced Deep Pyramid Network for Blurry Image Restoration Ruikang Xu, Zeyu Xiao, Jie Huang, Yueyi Zhang, Zhiwei Xiong. EDPN: Enhanced Deep Pyra

69 Dec 15, 2022
working repo for my xumx-sliCQ submissions to the ISMIR 2021 MDX

Music Demixing Challenge - xumx-sliCQ This repository is the GitHub mirror of my working submission repository for the AICrowd ISMIR 2021 Music Demixi

4 Aug 25, 2021
Meta graph convolutional neural network-assisted resilient swarm communications

Resilient UAV Swarm Communications with Graph Convolutional Neural Network This repository contains the source codes of Resilient UAV Swarm Communicat

62 Dec 06, 2022
《Deep Single Portrait Image Relighting》(ICCV 2019)

Ratio Image Based Rendering for Deep Single-Image Portrait Relighting [Project Page] This is part of the Deep Portrait Relighting project. If you find

62 Dec 21, 2022
PyTorch implementation of Barlow Twins.

Barlow Twins: Self-Supervised Learning via Redundancy Reduction PyTorch implementation of Barlow Twins. @article{zbontar2021barlow, title={Barlow Tw

Facebook Research 839 Dec 29, 2022