The code from the Machine Learning Bookcamp book and a free course based on the book

Overview

Machine Learning Bookcamp

The code from the Machine Learning Bookcamp book

Useful links:

Machine Learning Zoomcamp

Machine Learning Zoomcamp is a course based on the book

  • It's online and free
  • You can join at any moment
  • More information in the course-zoomcamp folder

Reading Plan

Chapters

Chapter 1: Introduction to Machine Learning

  • Understanding machine learning and the problems it can solve
  • CRISP-DM: Organizing a successful machine learning project
  • Training and selecting machine learning models
  • Performing model validation

No code

Chapter 2: Machine Learning for Regression

  • Creating a car-price prediction project with a linear regression model
  • Doing an initial exploratory data analysis with Jupyter notebooks
  • Setting up a validation framework
  • Implementing the linear regression model from scratch
  • Performing simple feature engineering for the model
  • Keeping the model under control with regularization
  • Using the model to predict car prices

Code: chapter-02-car-price/02-carprice.ipynb

Chapter 3: Machine Learning for Classification

  • Predicting customers who will churn with logistic regression
  • Doing exploratory data analysis for identifying important features
  • Encoding categorical variables to use them in machine learning models
  • Using logistic regression for classification

Code: chapter-03-churn-prediction/03-churn.ipynb

Chapter 4: Evaluation Metrics for Classification

  • Accuracy as a way of evaluating binary classification models and its limitations
  • Determining where our model makes mistakes using a confusion table
  • Deriving other metrics like precision and recall from the confusion table
  • Using ROC and AUC to further understand the performance of a binary classification model
  • Cross-validating a model to make sure it behaves optimally
  • Tuning the parameters of a model to achieve the best predictive performance

Code: chapter-03-churn-prediction/04-metrics.ipynb

Chapter 5: Deploying Machine Learning Models

  • Saving models with Pickle
  • Serving models with Flask
  • Managing dependencies with Pipenv
  • Making the service self-contained with Docker
  • Deploying it to the cloud using AWS Elastic Beanstalk

Code: chapter-05-deployment

Chapter 6: Decision Trees and Ensemble Learning

  • Predicting the risk of default with tree-based models
  • Decision trees and the decision tree learning algorithm
  • Random forest: putting multiple trees together into one model
  • Gradient boosting as an alternative way of combining decision trees

Code: chapter-06-trees/06-trees.ipynb

Chapter 7: Neural Networks and Deep Learning

  • Convolutional neural networks for image classification
  • TensorFlow and Keras — frameworks for building neural networks
  • Using pre-trained neural networks
  • Internals of a convolutional neural network
  • Training a model with transfer learning
  • Data augmentations — the process of generating more training data

Code: chapter-07-neural-nets/07-neural-nets-train.ipynb

Chapter 8: Serverless Deep Learning

  • Serving models with TensorFlow-Lite — a light-weight environment for applying TensorFlow models
  • Deploying deep learning models with AWS Lambda
  • Exposing the Lambda function as a web service via API Gateway

Code: chapter-08-serverless

Chapter 9: Kubernetes and Kubeflow

Kubernetes:

  • Understanding different methods of deploying and serving models in the cloud.
  • Serving Keras and TensorFlow models with TensorFlow-Serving
  • Deploying TensorFlow-Serving to Kubernetes

Code: chapter-09-kubernetes

Kubeflow:

  • Using Kubeflow and KFServing for simplifying the deployment process

Code: chapter-09-kubeflow

Articles from mlbookcamp.com:

Appendices

Appendix A: Setting up the Environment

  • Installing Anaconda, a Python distribution that includes most of the scientific libraries we need
  • Running a Jupyter Notebook service from a remote machine
  • Installing and configuring the Kaggle command line interface tool for accessing datasets from Kaggle
  • Creating an EC2 machine on AWS using the web interface and the command-line interface

Code: no code

Articles from mlbookcamp.com:

Appendix B: Introduction to Python

  • Basic python syntax: variables and control-flow structures
  • Collections: lists, tuples, sets, and dictionaries
  • List comprehensions: a concise way of operating on collections
  • Reusability: functions, classes and importing code
  • Package management: using pip for installing libraries
  • Running python scripts

Code: appendix-b-python.ipynb

Articles from mlbookcamp.com:

Appendix C: Introduction to NumPy and Linear Algebra

  • One-dimensional and two-dimensional NumPy arrays
  • Generating NumPy arrays randomly
  • Operations with NumPy arrays: element-wise operations, summarizing operations, sorting and filtering
  • Multiplication in linear algebra: vector-vector, matrix-vector and matrix-matrix multiplications
  • Finding the inverse of a matrix and solving the normal equation

Code: appendix-c-numpy.ipynb

Articles from mlbookcamp.com:

Appendix C: Introduction to Pandas

  • The main data structures in Pandas: DataFrame and Series
  • Accessing rows and columns of a DataFrame
  • Element-wise and summarizing operations
  • Working with missing values
  • Sorting and grouping

Code: appendix-d-pandas.ipynb

Appendix D: AWS SageMaker

  • Increasing the GPU quota limits
  • Renting a Jupyter notebook with GPU in AWS SageMaker
You might also like...
A fast, distributed, high performance gradient boosting (GBT, GBDT, GBRT, GBM or MART) framework based on decision tree algorithms, used for ranking, classification and many other machine learning tasks.

Light Gradient Boosting Machine LightGBM is a gradient boosting framework that uses tree based learning algorithms. It is designed to be distributed a

Examples and code for the Practical Machine Learning workshop series

Practical Machine Learning Workshop Series Practical Machine Learning for Quantitative Finance Post conference workshop at the WBS Spring Conference D

100 Days of Machine and Deep Learning Code

💯 Days of Machine Learning and Deep Learning Code MACHINE LEARNING TOPICS COVERED - FROM SCRATCH Linear Regression Logistic Regression K Means Cluste

Turns your machine learning code into microservices with web API, interactive GUI, and more.
Turns your machine learning code into microservices with web API, interactive GUI, and more.

Turns your machine learning code into microservices with web API, interactive GUI, and more.

TorchDrug is a PyTorch-based machine learning toolbox designed for drug discovery

A powerful and flexible machine learning platform for drug discovery

Machine learning template for projects based on sklearn library.

Machine learning template for projects based on sklearn library.

Predico Disease Prediction system based on symptoms provided by patient- using Python-Django & Machine Learning

Predico Disease Prediction system based on symptoms provided by patient- using Python-Django & Machine Learning

Painless Machine Learning for python based on scikit-learn

PlainML Painless Machine Learning Library for python based on scikit-learn. Install pip install plainml Example from plainml import KnnModel, load_ir

Microsoft contributing libraries, tools, recipes, sample codes and workshop contents for machine learning & deep learning.

Microsoft contributing libraries, tools, recipes, sample codes and workshop contents for machine learning & deep learning.

Comments
  • Adding setup with docker

    Adding setup with docker

    Hi @alexeygrigorev ,

    I created a small guide for anyone who feels comfortable using Docker or might want to try it for setting up the environment.

    Since I saw a couple of questions today related to environment setup, I thought of sharing what I usually use when working on projects or courses, then it can be re-usable.

    Hoping is helpful :)

    Changelog:

    • Updated readme with link to guide to create docker container
    • Added new guide to build docker container and run it
    • Added Dockerfile and environment.yml
    opened by laurauzcategui 5
  • While converting keras to tflite error

    While converting keras to tflite error

    While converting keras to tflite error :

    raise ValueError('Unrecognized keyword arguments:', kwargs.keys()) ValueError: ('Unrecognized keyword arguments:', dict_keys(['ragged']))

    Traceback (most recent call last): File "convert.py", line 5, in <module> model = keras.models.load_model('xception_v4_large_08_0.894.h5')

    opened by saisubramani 5
  • notes correction in 06 Decision Trees...

    notes correction in 06 Decision Trees...

    Inside 02-data-prep.md , in the train/val/test split bullet note at the moment is : "Split the data with the distribution of 80% train, 20% validation, and 20% test sets with random seed to 11"

    should be:

    Split the data with the distribution of 60% train, 20% validation, and 20% test sets with random seed to 11

    opened by lucapug 4
  • Update homework.md

    Update homework.md

    Updated Question 4 text from "when one grows" to "when one grows up" and the F1 formula from "F1 = 2 * P * R / (P + R)" to "$$F1 = {2.}\frac{P . R}{P+R}$$"

    opened by ukokobili 3
Releases(chapter7-model)
Owner
Alexey Grigorev
Alexey Grigorev
Scikit learn library models to account for data and concept drift.

liquid_scikit_learn Scikit learn library models to account for data and concept drift. This python library focuses on solving data drift and concept d

7 Nov 18, 2021
learn python in 100 days, a simple step could be follow from beginner to master of every aspect of python programming and project also include side project which you can use as demo project for your personal portfolio

learn python in 100 days, a simple step could be follow from beginner to master of every aspect of python programming and project also include side project which you can use as demo project for your

BDFD 6 Nov 05, 2022
Library of Stan Models for Survival Analysis

survivalstan: Survival Models in Stan author: Jacki Novik Overview Library of Stan Models for Survival Analysis Features: Variety of standard survival

Hammer Lab 122 Jan 06, 2023
Python implementation of Weng-Lin Bayesian ranking, a better, license-free alternative to TrueSkill

Python implementation of Weng-Lin Bayesian ranking, a better, license-free alternative to TrueSkill This is a port of the amazing openskill.js package

Open Debates Project 156 Dec 14, 2022
Kaggler is a Python package for lightweight online machine learning algorithms and utility functions for ETL and data analysis.

Kaggler is a Python package for lightweight online machine learning algorithms and utility functions for ETL and data analysis. It is distributed under the MIT License.

Jeong-Yoon Lee 720 Dec 25, 2022
Bayesian optimization based on Gaussian processes (BO-GP) for CFD simulations.

BO-GP Bayesian optimization based on Gaussian processes (BO-GP) for CFD simulations. The BO-GP codes are developed using GPy and GPyOpt. The optimizer

KTH Mechanics 8 Mar 31, 2022
Random Forest Classification for Neural Subtypes

Random Forest classifier for neural subtypes extracted from extracellular recordings from human brain organoids.

Michael Zabolocki 1 Jan 31, 2022
Nixtla is an open-source time series forecasting library.

Nixtla Nixtla is an open-source time series forecasting library. We are helping data scientists and developers to have access to open source state-of-

Nixtla 401 Jan 08, 2023
Evaluate on three different ML model for feature selection using Breast cancer data.

Anomaly-detection-Feature-Selection Evaluate on three different ML model for feature selection using Breast cancer data. ML models: SVM, KNN and MLP.

Tarek idrees 1 Mar 17, 2022
A GitHub action that suggests type annotations for Python using machine learning.

Typilus: Suggest Python Type Annotations A GitHub action that suggests type annotations for Python using machine learning. This action makes suggestio

40 Sep 18, 2022
Uses WiFi signals :signal_strength: and machine learning to predict where you are

Uses WiFi signals and machine learning (sklearn's RandomForest) to predict where you are. Even works for small distances like 2-10 meters.

Pascal van Kooten 5k Jan 09, 2023
A Pythonic framework for threat modeling

pytm: A Pythonic framework for threat modeling Introduction Traditional threat modeling too often comes late to the party, or sometimes not at all. In

Izar Tarandach 644 Dec 20, 2022
The Fuzzy Labs guide to the universe of open source MLOps

Open Source MLOps This is the Fuzzy Labs guide to the universe of free and open source MLOps tools. Contents What is MLOps, anyway? Data version contr

Fuzzy Labs 352 Dec 29, 2022
[HELP REQUESTED] Generalized Additive Models in Python

pyGAM Generalized Additive Models in Python. Documentation Official pyGAM Documentation: Read the Docs Building interpretable models with Generalized

daniel servén 747 Jan 05, 2023
SmartSim makes it easier to use common Machine Learning (ML) libraries like PyTorch and TensorFlow

SmartSim makes it easier to use common Machine Learning (ML) libraries like PyTorch and TensorFlow, in High Performance Computing (HPC) simulations and workloads.

Automated machine learning: Review of the state-of-the-art and opportunities for healthcare

Automated machine learning: Review of the state-of-the-art and opportunities for healthcare

42 Dec 23, 2022
Distributed training framework for TensorFlow, Keras, PyTorch, and Apache MXNet.

Horovod Horovod is a distributed deep learning training framework for TensorFlow, Keras, PyTorch, and Apache MXNet. The goal of Horovod is to make dis

Horovod 12.9k Jan 07, 2023
A toolkit for making real world machine learning and data analysis applications in C++

dlib C++ library Dlib is a modern C++ toolkit containing machine learning algorithms and tools for creating complex software in C++ to solve real worl

Davis E. King 11.6k Jan 02, 2023
A naive Bayes model for cancer classification using a set of documents

Naivebayes text classifcation model for cancer and noncancer documents Author: Alex King Purpose Requirements/files included How to use 1. Purpose The

Alex W King 1 Nov 24, 2021
Unofficial pytorch implementation of the paper "Context Reasoning Attention Network for Image Super-Resolution (ICCV 2021)"

CRAN Unofficial pytorch implementation of the paper "Context Reasoning Attention Network for Image Super-Resolution (ICCV 2021)" This code doesn't exa

4 Nov 11, 2021