PyTorch source code of NAACL 2019 paper "An Embarrassingly Simple Approach for Transfer Learning from Pretrained Language Models"

Related tags

Text Data & NLPsiatl
Overview

This repository contains source code for NAACL 2019 paper "An Embarrassingly Simple Approach for Transfer Learning from Pretrained Language Models" (Paper link)

Introduction

This paper presents a simple transfer learning approach that addresses the problem of catastrophic forgetting. We pretrain a language model and then transfer it to a new model, to which we add a recurrent layer and an attention mechanism. Based on multi-task learning, we use a weighted sum of losses (language model loss and classification loss) and fine-tune the pretrained model on our (classification) task.

Architecture

Step 1:

  • Pretraining of a word-level LSTM-based language model

Step 2:

  • Fine-tuning the language model (LM) on a classification task

  • Use of an auxiliary LM loss

  • Employing 2 different optimizers (1 for the pretrained part and 1 for the newly added part)

  • Sequentially unfreezing

Reference

@inproceedings{chronopoulou-etal-2019-embarrassingly,
    title = "An Embarrassingly Simple Approach for Transfer Learning from Pretrained Language Models",
    author = "Chronopoulou, Alexandra  and
      Baziotis, Christos  and
      Potamianos, Alexandros",
    booktitle = "Proceedings of the 2019 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)",
    month = jun,
    year = "2019",
    address = "Minneapolis, Minnesota",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/N19-1213",
    pages = "2089--2095",
}

Prerequisites

Dependencies

  • PyTorch version >=0.4.0

  • Python version >= 3.6

Install Requirements

Create Environment (Optional): Ideally, you should create a conda environment for the project.

conda create -n siatl python=3
conda activate siatl

Install PyTorch 0.4.0 with the desired cuda version to use the GPU:

conda install pytorch==0.4.0 torchvision -c pytorch

Then install the rest of the requirements:

pip install -r requirements.txt

Download Data

You can find Sarcasm Corpus V2 (link) under datasets/

Plot visualization

Visdom is used to visualized metrics during training. You should start the server through the command line (using tmux or screen) by typing visdom. You will be then able to see the visualizations by going to http://localhost:8097 in your browser.

Check here for more: https://github.com/facebookresearch/visdom#usage

Training

In order to train the model, either the LM or the SiATL, you need to run the corresponding python script and pass as an argument a yaml model config. The yaml config specifies all the configuration details of the experiment to be conducted. To make any changes to a model, change an existing or create a new yaml config file.

The yaml config files can be found under model_configs/ directory.

Use the pretrained Language Model:

cd checkpoints/
wget https://www.dropbox.com/s/lalizxf3qs4qd3a/lm20m_70K.pt 

(Download it and place it in checkpoints/ directory)

(Optional) Train a Language Model:

Assuming you have placed the training and validation data under datasets/<name_of_your_corpus/train.txt, datasets/<name_of_your_corpus/valid.txt (check the model_configs/lm_20m_word.yaml's data section), you can train a LM.

See for example:

python models/sent_lm.py -i lm_20m_word.yaml

Fine-tune the Language Model on the labeled dataset, using an auxiliary LM loss, 2 optimizers and sequential unfreezing, as described in the paper:

To fine-tune it on the Sarcasm Corpus V2 dataset:

python models/run_clf.py -i SCV2_aux_ft_gu.yaml --aux_loss --transfer

  • -i: Configuration yaml file (under model_configs/)
  • --aux_loss: You can choose if you want to use an auxiliary LM loss
  • --transfer: You can choose if you want to use a pretrained LM to initalize the embedding and hidden layer of your model. If not, they will be randomly initialized
Owner
Alexandra Chronopoulou
Research Intern at AllenAI. CS PhD student in LMU Munich.
Alexandra Chronopoulou
[ICLR 2021 Spotlight] Pytorch implementation for "Long-tailed Recognition by Routing Diverse Distribution-Aware Experts."

RIDE: Long-tailed Recognition by Routing Diverse Distribution-Aware Experts. by Xudong Wang, Long Lian, Zhongqi Miao, Ziwei Liu and Stella X. Yu at UC

Xudong (Frank) Wang 205 Dec 16, 2022
DeBERTa: Decoding-enhanced BERT with Disentangled Attention

DeBERTa: Decoding-enhanced BERT with Disentangled Attention This repository is the official implementation of DeBERTa: Decoding-enhanced BERT with Dis

Microsoft 1.2k Jan 03, 2023
Reformer, the efficient Transformer, in Pytorch

Reformer, the Efficient Transformer, in Pytorch This is a Pytorch implementation of Reformer https://openreview.net/pdf?id=rkgNKkHtvB It includes LSH

Phil Wang 1.8k Dec 30, 2022
A 10000+ hours dataset for Chinese speech recognition

A 10000+ hours dataset for Chinese speech recognition

309 Dec 16, 2022
Code Generation using a large neural network called GPT-J

CodeGenX is a Code Generation system powered by Artificial Intelligence! It is delivered to you in the form of a Visual Studio Code Extension and is Free and Open-source!

DeepGenX 389 Dec 31, 2022
Code for Editing Factual Knowledge in Language Models

KnowledgeEditor Code for Editing Factual Knowledge in Language Models (https://arxiv.org/abs/2104.08164). @inproceedings{decao2021editing, title={Ed

Nicola De Cao 86 Nov 28, 2022
hashily is a Python module that provides a variety of text decoding and encoding operations.

hashily is a python module that performs a variety of text decoding and encoding functions. It also various functions for encrypting and decrypting text using various ciphers.

DevMysT 5 Jul 17, 2022
Transformer related optimization, including BERT, GPT

This repository provides a script and recipe to run the highly optimized transformer-based encoder and decoder component, and it is tested and maintained by NVIDIA.

NVIDIA Corporation 1.7k Jan 04, 2023
Artificial Conversational Entity for queries in Eulogio "Amang" Rodriguez Institute of Science and Technology (EARIST)

🤖 Coeus - EARIST A.C.E 💬 Coeus is an Artificial Conversational Entity for queries in Eulogio "Amang" Rodriguez Institute of Science and Technology,

Dids Irwyn Reyes 3 Oct 14, 2022
SDL: Synthetic Document Layout dataset

SDL is the project that synthesizes document images. It facilitates multiple-level labeling on document images and can generate in multiple languages.

Sơn Nguyễn 0 Oct 07, 2021
A workshop with several modules to help learn Feast, an open-source feature store

Workshop: Learning Feast This workshop aims to teach users about Feast, an open-source feature store. We explain concepts & best practices by example,

Feast 52 Jan 05, 2023
Text-Based zombie apocalyptic decision-making game in Python

Inspiration We shared university first year game coursework.[to gauge previous experience and start brainstorming] Adapted a particular nuclear fallou

Amin Sabbagh 2 Feb 17, 2022
A PyTorch-based model pruning toolkit for pre-trained language models

English | 中文说明 TextPruner是一个为预训练语言模型设计的模型裁剪工具包,通过轻量、快速的裁剪方法对模型进行结构化剪枝,从而实现压缩模型体积、提升模型速度。 其他相关资源: 知识蒸馏工具TextBrewer:https://github.com/airaria/TextBrewe

Ziqing Yang 231 Jan 08, 2023
Tensorflow Implementation of A Generative Flow for Text-to-Speech via Monotonic Alignment Search

Tensorflow Implementation of A Generative Flow for Text-to-Speech via Monotonic Alignment Search

Ankur Dhuriya 10 Oct 13, 2022
Material for GW4SHM workshop, 16/03/2022.

GW4SHM Workshop Wednesday, 16th March 2022 (13:00 – 15:15 GMT): Presented by: Dr. Rhodri Nelson, Imperial College London Project website: https://www.

Devito Codes 1 Mar 16, 2022
Official code for Spoken ObjectNet: A Bias-Controlled Spoken Caption Dataset

Official code for our Interspeech 2021 - Spoken ObjectNet: A Bias-Controlled Spoken Caption Dataset [1]*. Visually-grounded spoken language datasets c

Ian Palmer 3 Jan 26, 2022
This repository implements a brute-force spellchecker utilizing the Damerau-Levenshtein edit distance.

About spellchecker.py Implementing a highly-accurate, brute-force, and dynamically programmed spellchecking program that utilizes the Damerau-Levensht

Raihan Ahmed 1 Dec 11, 2021
Repositório da disciplina no semestre 2021-2

Avisos! Nenhum aviso! Compiladores 1 Este é o Git da disciplina Compiladores 1. Aqui ficará o material produzido em sala de aula assim como tarefas, w

6 May 13, 2022
A library for finding knowledge neurons in pretrained transformer models.

knowledge-neurons An open source repository replicating the 2021 paper Knowledge Neurons in Pretrained Transformers by Dai et al., and extending the t

EleutherAI 96 Dec 21, 2022
nlp-tutorial is a tutorial for who is studying NLP(Natural Language Processing) using Pytorch

nlp-tutorial is a tutorial for who is studying NLP(Natural Language Processing) using Pytorch. Most of the models in NLP were implemented with less than 100 lines of code.(except comments or blank li

Tae-Hwan Jung 11.9k Jan 08, 2023