A simple flask application to collect annotations for the Turing Change Point Dataset, a benchmark dataset for change point detection algorithms

Overview

AnnotateChange

Welcome to the repository of the "AnnotateChange" application. This application was created to collect annotations of time series data in order to construct the Turing Change Point Dataset (TCPD). The TCPD is a dataset of real-world time series used to evaluate change point detection algorithms. For the change point detection benchmark that was created using this dataset, see the Turing Change Point Detection Benchmark repository.

Any work that uses this repository should cite our paper: Van den Burg & Williams - An Evaluation of Change Point Detection Algorithms (2020). You can use the following BibTeX entry:

@article{vandenburg2020evaluation,
        title={An Evaluation of Change Point Detection Algorithms},
        author={{Van den Burg}, G. J. J. and Williams, C. K. I.},
        journal={arXiv preprint arXiv:2003.06222},
        year={2020}
}

Here's a screenshot of what the application looks like during the annotation process:

screenshot of 
AnnotateChange

Some of the features of AnnotateChange include:

  • Admin panel to add/remove datasets, add/remove annotation tasks, add/remove users, and inspect incoming annotations.

  • Basic user management: authentication, email confirmation, forgotten password, automatic log out after inactivity, etc. Users are only allowed to register using an email address from an approved domain.

  • Task assignment of time series to user is done on the fly, ensuring no user ever annotates the same dataset twice, and prioritising datasets that are close to a desired number of annotations.

  • Interactive graph of a time series that supports pan and zoom, support for multidimensional time series.

  • Mandatory "demo" to onboard the user to change point annotation.

  • Backup of annotations to the admin via email.

  • Time series datasets are verified upon upload acccording to a strict schema.

Getting Started

Below are instructions for setting up the application for local development and for running the application with Docker.

Basic

AnnotateChange can be launched quickly for local development as follows:

  1. Clone the repo

    $ git clone https://github.com/alan-turing-institute/AnnotateChange
    $ cd AnnotateChange
    
  2. Set up a virtual environment and install dependencies (requires Python 3.7+)

    $ sudo apt-get install -y python3-venv # assuming Ubuntu
    $ pip install wheel
    $ python3 -m venv ./venv
    $ source ./venv/bin/activate
    $ pip install -r requirements.txt
    
  3. Create local development environment file

    $ cp .env.example .env.development
    $ sed -i 's/DB_TYPE=mysql/DB_TYPE=sqlite3/g' .env.development
    

    With DB_TYPE=sqlite3, we don't have to deal with MySQL locally.

  4. Initialize the database (this will be a local app.db file).

    $ ./flask.sh db upgrade
    
  5. Create the admin user account

    $ ./flask.sh admin add --auto-confirm-email
    

    The --auto-confirm-email flag automatically marks the email address of the admin user as confirmed. This is mostly useful in development environments when you don't have a mail address set up yet.

  6. Run the application

    $ ./flask.sh run
    

    This should tell you where its running, probably localhost:5000. You should be able to log in with the admin account you've just created.

  7. As admin, upload ALL demo datasets (included in demo_data) through: Admin Panel -> Add dataset. You should then be able to follow the introduction to the app (available from the landing page).

  8. After completing the instruction, you then will be able to access the user interface ("Home") to annotate your own time series.

Docker

To use AnnotateChange locally using Docker, follow the steps below. For a full-fledged installation on a server, see the deployment instructions.

  1. Install docker and docker-compose.

  2. Clone this repository and switch to it:

    $ git clone https://github.com/alan-turing-institute/AnnotateChange
    $ cd AnnotateChange
    
  3. Build the docker image:

    $ docker build -t gjjvdburg/annotatechange .
    
  4. Create the directory for persistent MySQL database storage:

    $ mkdir -p persist/{instance,mysql}
    $ sudo chown :1024 persist/instance
    $ chmod 775 persist/instance
    $ chmod g+s persist/instance
    
  5. Copy the environment variables file:

    $ cp .env.example .env
    

    Some environment variables can be adjusted if needed. For example, when moving to production, you'll need to change the FLASK_ENV variable accordingly. Please also make sure to set a proper SECRET_KEY and AC_MYSQL_PASSWORD (= MYSQL_PASSWORD). You'll also need to configure a mail account so the application can send out emails for registration etc. This is what the variables prefixed with MAIL_ are for. The ADMIN_EMAIL is likely your own email, it is used when the app encounters an error and to send backups of the annotation records. You can limit the email domains users can use with the USER_EMAIL_DOMAINS variable. See the config.py file for more info on the configuration options.

  6. Create a local docker network for communiation between the AnnotateChange app and the MySQL server:

    $ docker network create web
    
  7. Launch the services with docker-compose

    $ docker-compose up
    

    You may need to wait 2 minutes here before the database is initialized. If all goes well, you should be able to point your browser to localhost:7831 and see the landing page of the application. Stop the service before continuing to the next step (by pressing Ctrl+C).

  8. Once you have the app running, you'll want to create an admin account so you can upload datasets, manage tasks and users, and download annotation results. This can be done using the following command:

    $ docker-compose run --entrypoint 'flask admin add --auto-confirm-email' annotatechange
    
  9. As admin, upload ALL demo datasets (included in demo_data) through: Admin Panel -> Add dataset. You should then be able to follow the introduction to the app (available from the landing page).

  10. After completing the instruction, you then will be able to access the user interface ("Home") to annotate your own time series.

Notes

This codebase is provided "as is". If you find any problems, please raise an issue on GitHub.

The code is licensed under the MIT License.

This code was written by Gertjan van den Burg with helpful comments provided by Chris Williams.

Some implementation details

Below are some thoughts that may help make sense of the codebase.

  • AnnotateChange is a web application build on the Flask framework. See this excellent tutorial for an introduction to Flask. The flask.sh shell script loads the appropriate environment variables and runs the application.

  • The application handles user management and is centered around the idea of a "task" which links a particular user to a particular time series to annotate.

  • An admin role is available, and the admin user can manually assign and delete tasks as well as add/delete users, datasets, etc. The admin user is created using the cli (see the Getting Started documentation above).

  • All datasets must adhere to a specific dataset schema (see utils/dataset_schema.json). See the files in [demo_data] for examples, as well as those in TCPD.

  • Annotations are stored in the database using 0-based indexing. Tasks are assigned on the fly when a user requests a time series to annotate (see utils/tasks.py).

  • Users can only begin annotating when they have successfully passed the introduction.

  • Configuration of the app is done through environment variables, see the .env.example file for an example.

  • Docker is used for deployment (see the deployment documentation in docs), and Traefik is used for SSL, etc.

  • The time series graph is plotted using d3.js.

Owner
The Alan Turing Institute
The UK's national institute for data science and artificial intelligence.
The Alan Turing Institute
A Python library that simplifies the extraction of datasets from XML content.

xmldataset: simple xml parsing 🗃️ XML Dataset: simple xml parsing Documentation: https://xmldataset.readthedocs.io A Python library that simplifies t

James Spurin 75 Dec 30, 2022
Data science on SDGs - Udemy Online Course Material: Data Science on Sustainable Development Goals

Data Science on Sustainable Development Goals (SDGs) Udemy Online Course Material: Data Science on Sustainable Development Goals https://bit.ly/data_s

Frank Kienle 1 Jan 04, 2022
The mitosheet package, trymito.io, and other public Mito code.

Mito Monorepo Mito is a spreadsheet that lives inside your JupyterLab notebooks. It allows you to edit Pandas dataframes like an Excel file, and gener

Mito 1.4k Dec 31, 2022
k3heap is a binary min heap implemented with reference

k3heap k3heap is a binary min heap implemented with reference k3heap is a component of pykit3 project: a python3 toolkit set. In this module RefHeap i

pykit3 1 Nov 13, 2021
This is a template (starter kit) for writing Maturity Work with Sphinx / LaTeX at Collège du Sud

sphinx-tm-template Ce dépôt est un template de base utilisable pour écrire ton travail de maturité dans le séminaire d'informatique du Collège du Sud.

6 Dec 22, 2022
A simple USI Shogi Engine written in python using python-shogi.

Revengeshogi My attempt at creating a USI Shogi Engine in python using python-shogi. Current State of Engine Currently only generating random moves us

1 Jan 06, 2022
The tutorial is a collection of many other resources and my own notes

Why we need CTC? --- looking back on history 1.1. About CRNN 1.2. from Cross Entropy Loss to CTC Loss Details about CTC 2.1. intuition: forward algor

手写AI 7 Sep 19, 2022
A curated list of awesome mathematics resources

A curated list of awesome mathematics resources

Cyrille Rossant 6.7k Jan 05, 2023
Create Python API documentation in Markdown format.

Pydoc-Markdown Pydoc-Markdown is a tool and library to create Python API documentation in Markdown format based on lib2to3, allowing it to parse your

Niklas Rosenstein 375 Jan 05, 2023
DataRisk Detection Learning Resources

DataRisk Detection Learning Resources Data security: Based on the "data-centric security system" position, it generally refers to the entire security

Liao Wenzhe 59 Dec 05, 2022
My Sublime Text theme

rsms sublime text theme Install: cd path/to/your/sublime/packages git clone https://github.com/rsms/sublime-theme.git rsms-theme You'll also need the

Rasmus 166 Jan 04, 2023
Example Python code for running the mango-explorer marketmaker

🥭 Mango Explorer 📖 Introduction This guide will show you how to load and run a customisable marketmaker that runs on Mango Markets using the mango-e

Blockworks Foundation 2 Apr 11, 2022
Parser manager for parsing DOC, DOCX, PDF or HTML files

Parser manager Description Parser gets PDF, DOC, DOCX or HTML file via API and saves parsed data to the database. Implemented in Ruby 3.0.1 using Acti

Эдем 4 Dec 04, 2021
A system for Python that generates static type annotations by collecting runtime types

MonkeyType MonkeyType collects runtime types of function arguments and return values, and can automatically generate stub files or even add draft type

Instagram 4.1k Jan 07, 2023
MonsterManualPlus - An advanced monster manual for Tower of the Sorcerer.

Monster Manual + This is an advanced monster manual for Tower of the Sorcerer mods. Users can get a plenty of extra imformation for decision making wh

Yifan Zhou 1 Jan 01, 2022
Exercism exercises in Python.

Exercism exercises in Python.

Exercism 1.3k Jan 04, 2023
Generate modern Python clients from OpenAPI

openapi-python-client Generate modern Python clients from OpenAPI 3.x documents. This generator does not support OpenAPI 2.x FKA Swagger. If you need

555 Jan 02, 2023
JMESPath is a query language for JSON.

JMESPath JMESPath (pronounced "james path") allows you to declaratively specify how to extract elements from a JSON document. For example, given this

1.7k Dec 31, 2022
Collection of Summer 2022 tech internships!

Collection of Summer 2022 tech internships!

Pitt Computer Science Club (CSC) 15.6k Jan 03, 2023
Generating a report CSV and send it to an email - Python / Django Rest Framework

Generating a report in CSV format and sending it to a email How to start project. Create a folder in your machine Create a virtual environment python3

alexandre Lopes 1 Jan 17, 2022