《Truly shift-invariant convolutional neural networks》(2021)

Overview

Truly shift-invariant convolutional neural networks [Paper]

Authors: Anadi Chaman and Ivan Dokmanić

Convolutional neural networks were always assumed to be shift invariant, until recently when it was shown that the classification accuracy of a trained CNN can take a serious hit with merely a 1-pixel shift in input image. One of the primary reasons for this problem is the use of downsampling (popularly known as stride) layers in the networks.

In this work, we present Adaptive Polyphase Sampling (APS), an easy-to-implement non-linear downsampling scheme that completely gets rid of this problem. The resulting CNNs yield 100% consistency in classification performance under shifts without any loss in accuracy. In fact, unlike prior works, the networks exhibit perfect consistency even before training, making it the first approach that makes CNNs truly shift invariant.

This repository contains our code in PyTorch to implement APS.

ImageNet training

To train ResNet-18 model with APS on ImageNet use the following commands (training and evaluation with circular shifts).

cd imagenet_exps
python3 main.py --out-dir OUT_DIR --arch resnet18_aps1 --seed 0 --data PATH-TO-DATASET

For training on multiple GPUs:

cd imagenet_exps
python3 main.py --out-dir OUT_DIR --arch resnet18_aps1 --seed 0 --data PATH-TO-DATASET --workers NUM_WORKERS --dist-url tcp://127.0.0.1:FREE-PORT --dist-backend nccl --multiprocessing-distributed --world-size 1 --rank 0

--arch is used to specify the architecture. To use ResNet18 with APS layer and blur filter of size j, pass 'resnet18_apsj' as the argument to --arch. List of currently supported network architectures are here.

--circular_data_aug can be used to additionally train the networks with random circular shifts.

Results are saved in OUT_DIR.

CIFAR-10 training

The following commands run our implementation on CIFAR-10 dataset.

cd cifar10_exps
python3 main.py --arch 'resnet18_aps' --filter_size FILTER_SIZE --validate_consistency --seed_num 0 --device_id 0 --model_folder CURRENT_MODEL_DIRECTORY --results_root_path ROOT_DIRECTORY --dataset_path PATH-TO-DATASET

--data_augmentation_flag can be used to additionally train the networks with randomly shifted images. FILTER_SIZE can take the values between 1 to 7. The list of CNN architectures currently supported can be found here.

The results are saved in the path: ROOT_DIRECTORY/CURRENT_MODEL_DIRECTORY/

Owner
Anadi Chaman
Anadi Chaman
Reinforcement Learning for finance

Reinforcement Learning for Finance We apply reinforcement learning for stock trading. Fetch Data Example import utils # fetch symbols from yahoo fina

Tomoaki Fujii 159 Jan 03, 2023
A framework for analyzing computer vision models with simulated data

3DB: A framework for analyzing computer vision models with simulated data Paper Quickstart guide Blog post Installation Follow instructions on: https:

3DB 112 Jan 01, 2023
A two-stage U-Net for high-fidelity denoising of historical recordings

A two-stage U-Net for high-fidelity denoising of historical recordings Official repository of the paper (not submitted yet): E. Moliner and V. Välimäk

Eloi Moliner Juanpere 57 Jan 05, 2023
FluxTraining.jl gives you an endlessly extensible training loop for deep learning

A flexible neural net training library inspired by fast.ai

86 Dec 31, 2022
Official Repository of NeurIPS2021 paper: PTR

PTR: A Benchmark for Part-based Conceptual, Relational, and Physical Reasoning Figure 1. Dataset Overview. Introduction A critical aspect of human vis

Yining Hong 32 Jun 02, 2022
Use evolutionary algorithms instead of gridsearch in scikit-learn

sklearn-deap Use evolutionary algorithms instead of gridsearch in scikit-learn. This allows you to reduce the time required to find the best parameter

rsteca 709 Jan 03, 2023
Deep Learning and Reinforcement Learning Library for Scientists and Engineers 🔥

TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides an extens

TensorLayer Community 7.1k Dec 29, 2022
Active Offline Policy Selection With Python

Active Offline Policy Selection This is supporting example code for NeurIPS 2021 paper Active Offline Policy Selection by Ksenia Konyushkova*, Yutian

DeepMind 27 Oct 15, 2022
Receptive Field Block Net for Accurate and Fast Object Detection, ECCV 2018

Receptive Field Block Net for Accurate and Fast Object Detection By Songtao Liu, Di Huang, Yunhong Wang Updatas (2021/07/23): YOLOX is here!, stronger

Liu Songtao 1.4k Dec 21, 2022
PyTorch implementation of Octave Convolution with pre-trained Oct-ResNet and Oct-MobileNet models

octconv.pytorch PyTorch implementation of Octave Convolution in Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octa

Duo Li 273 Dec 18, 2022
[WACV 2022] Contextual Gradient Scaling for Few-Shot Learning

CxGrad - Official PyTorch Implementation Contextual Gradient Scaling for Few-Shot Learning Sanghyuk Lee, Seunghyun Lee, and Byung Cheol Song In WACV 2

Sanghyuk Lee 4 Dec 05, 2022
An implementation of chunked, compressed, N-dimensional arrays for Python.

Zarr Latest Release Package Status License Build Status Coverage Downloads Gitter Citation What is it? Zarr is a Python package providing an implement

Zarr Developers 1.1k Dec 30, 2022
Integrated Semantic and Phonetic Post-correction for Chinese Speech Recognition

Integrated Semantic and Phonetic Post-correction for Chinese Speech Recognition | paper | dataset | pretrained detection model | Authors: Yi-Chang Che

Yi-Chang Chen 1 Aug 23, 2022
Official repository for the ICLR 2021 paper Evaluating the Disentanglement of Deep Generative Models with Manifold Topology

Official repository for the ICLR 2021 paper Evaluating the Disentanglement of Deep Generative Models with Manifold Topology Sharon Zhou, Eric Zelikman

Stanford Machine Learning Group 34 Nov 16, 2022
Motion Planner Augmented Reinforcement Learning for Robot Manipulation in Obstructed Environments (CoRL 2020)

Motion Planner Augmented Reinforcement Learning for Robot Manipulation in Obstructed Environments [Project website] [Paper] This project is a PyTorch

Cognitive Learning for Vision and Robotics (CLVR) lab @ USC 49 Nov 28, 2022
FindFunc is an IDA PRO plugin to find code functions that contain a certain assembly or byte pattern, reference a certain name or string, or conform to various other constraints.

FindFunc: Advanced Filtering/Finding of Functions in IDA Pro FindFunc is an IDA Pro plugin to find code functions that contain a certain assembly or b

213 Dec 17, 2022
[ICME 2021 Oral] CORE-Text: Improving Scene Text Detection with Contrastive Relational Reasoning

CORE-Text: Improving Scene Text Detection with Contrastive Relational Reasoning This repository is the official PyTorch implementation of CORE-Text, a

Jingyang Lin 18 Aug 11, 2022
Code for training and evaluation of the model from "Language Generation with Recurrent Generative Adversarial Networks without Pre-training"

Language Generation with Recurrent Generative Adversarial Networks without Pre-training Code for training and evaluation of the model from "Language G

Amir Bar 253 Sep 14, 2022
Adversarial Reweighting for Partial Domain Adaptation

Adversarial Reweighting for Partial Domain Adaptation Code for paper "Xiang Gu, Xi Yu, Yan Yang, Jian Sun, Zongben Xu, Adversarial Reweighting for Par

12 Dec 01, 2022
ICRA 2021 - Robust Place Recognition using an Imaging Lidar

Robust Place Recognition using an Imaging Lidar A place recognition package using high-resolution imaging lidar. For best performance, a lidar equippe

Tixiao Shan 293 Dec 27, 2022