Implement the Perspective open source code in preparation for data visualization

Overview

Task Overview | Installation Instructions | Link to Module 2

Introduction

Experience Technology at JP Morgan Chase

Try out what real work is like in the technology team JP Morgan Chase. Fast track to the tech team with your work.

Module 2 Task Overview

Use JP Morgan Chase's frameworks and tools Implement JP Morgan Chase’s Perspective open source code in preparation for data visualization

Aim:Take an incomplete setup of Perspective, i.e. a graph that updates manually, and make it work with the code from Task 1 such that it now updates automatically by continuously requesting from the server application

  1. Please clone this repository to start the task
  2. [goal-a] In the client application, observe that when new data feed is retrieved whenever you click the 'Start Streaming Data' button, the previous entry is re-entered into the table. Update the application so that the table does not have duplicated entries
  3. [goal-b] We also want the react app to keep continuosly requesting data from the python server. Currently, the data feed is called only once every time the 'Start Streaming' button is clicked. Change the application to continuously query the datafeed every 100ms when the 'Start Streaming' is clicked.
  4. [goal-c] Currently, the Perspective element only shows the data in table view after the data loads. Add Perspective configurations so that when the data is loaded, it shows the historical data of ask_price ABC in the Y line chart.
  5. Upload a git patch file as the submission to this task

Set up / Installation

In order to get the server and client application code working on your machine, follow the setup here

Note:This is the version of the JPM 2 exercise that uses Python 3. The Python 2.7 version is in this other repo

How to Run

Similar to Task 1, start the data feed server by running the python server.

Make sure your terminal / command line is in the repository first before doing any of this.

If you are using Windows, make sure to run your terminal/command prompt as administrator.

python datafeed/server3.py

If you encounter an issue with datautil.parser, run this command:

pip install python-dateutil

If you don't have pip, you can install it from: https://pip.pypa.io/en/stable/installing/

Run npm install && npm start to start the React application.

It's okay to have audit warnings when installing/running the app.

If you don't have npm (although you should if you followed the set up / installation part), you can install the recommended version alongside NodeJS from: https://nodejs.org/en/

The recommended version are node v11.0.0 and npm v6.4.1

Open http://localhost:3000 to view the app in the browser. The page will reload if you make edits.

Known Issues

Some users seem to be having trouble with the unzipped version of the node_modules back up for windows. This is the alternative unzipped version: https://drive.google.com/drive/folders/1wzIlt-OeiK6nYEHidsOGlpJ_KmeoPVXz

Note: You may need to (hard) refresh the link to the public gdrive to see all of the files/folders e.g. @jpmorganchase/perspective as it takes gdrive a bit to load them for you.

How to fix the code to meet the objectives

To make the changes necessary to complete the objectives of this task, follow this guide.

How to submit your work

A patch file is what is required from you to submit. To create a patch file, follow this guide. Then submit the patch file in the JPM Module 2 Page.

Owner
Abdulazeez Jimoh
Junior Software Engineer
Abdulazeez Jimoh
Streamlit dashboard examples - Twitter cashtags, StockTwits, WSB, Charts, SQL Pattern Scanner

streamlit-dashboards Streamlit dashboard examples - Twitter cashtags, StockTwits, WSB, Charts, SQL Pattern Scanner Tutorial Video https://ww

122 Dec 21, 2022
Graphing communities on Twitch.tv in a visually intuitive way

VisualizingTwitchCommunities This project maps communities of streamers on Twitch.tv based on shared viewership. The data is collected from the Twitch

Kiran Gershenfeld 312 Jan 07, 2023
A high performance implementation of HDBSCAN clustering. http://hdbscan.readthedocs.io/en/latest/

HDBSCAN Now a part of scikit-learn-contrib HDBSCAN - Hierarchical Density-Based Spatial Clustering of Applications with Noise. Performs DBSCAN over va

Leland McInnes 91 Dec 29, 2022
Pydrawer: The Python package for visualizing curves and linear transformations in a super simple way

pydrawer 📐 The Python package for visualizing curves and linear transformations in a super simple way. ✏️ Installation Install pydrawer package with

Dylan Tintenfich 56 Dec 30, 2022
A Python function that makes flower plots.

Flower plot A Python 3.9+ function that makes flower plots. Installation This package requires at least Python 3.9. pip install

Thomas Roder 4 Jun 12, 2022
Complex heatmaps are efficient to visualize associations between different sources of data sets and reveal potential patterns.

Make Complex Heatmaps Complex heatmaps are efficient to visualize associations between different sources of data sets and reveal potential patterns. H

Zuguang Gu 973 Jan 09, 2023
I'm doing Genuary, an aritifiacilly generated month to build code that make beautiful things

Genuary 2022 I'm doing Genuary, an aritifiacilly generated month to build code that make beautiful things. Every day there is a new prompt for making

Joaquín Feltes 1 Jan 10, 2022
This is simply repo for line drawing rendering using freestyle in Blender.

blender_freestyle_line_drawing This is simply repo for line drawing rendering using freestyle in Blender. how to use blender2935 --background --python

MaxLin 3 Jul 02, 2022
Analytical Web Apps for Python, R, Julia, and Jupyter. No JavaScript Required.

Dash Dash is the most downloaded, trusted Python framework for building ML & data science web apps. Built on top of Plotly.js, React and Flask, Dash t

Plotly 17.9k Dec 31, 2022
Dimensionality reduction in very large datasets using Siamese Networks

ivis Implementation of the ivis algorithm as described in the paper Structure-preserving visualisation of high dimensional single-cell datasets. Ivis

beringresearch 284 Jan 01, 2023
Streamlit component for Let's-Plot visualization library

streamlit-letsplot This is a work-in-progress, providing a convenience function to plot charts from the Lets-Plot visualization library. Example usage

Randy Zwitch 9 Nov 03, 2022
Extensible, parallel implementations of t-SNE

openTSNE openTSNE is a modular Python implementation of t-Distributed Stochasitc Neighbor Embedding (t-SNE) [1], a popular dimensionality-reduction al

Pavlin Poličar 1.1k Jan 03, 2023
LinkedIn connections analyzer

LinkedIn Connections Analyzer 🔗 https://linkedin-analzyer.herokuapp.com Hey hey 👋 , welcome to my LinkedIn connections analyzer. I recently found ou

Okkar Min 5 Sep 13, 2022
A Python toolbox for gaining geometric insights into high-dimensional data

"To deal with hyper-planes in a 14 dimensional space, visualize a 3D space and say 'fourteen' very loudly. Everyone does it." - Geoff Hinton Overview

Contextual Dynamics Laboratory 1.8k Dec 29, 2022
Visualise top-rated GitHub repositories in a barchart by keyword

This python script was written for simple purpose -- to visualise top-rated GitHub repositories in a barchart by keyword. Script generates html-page with barchart and information about repository own

Cur1iosity 2 Feb 07, 2022
GDSHelpers is an open-source package for automatized pattern generation for nano-structuring.

GDSHelpers GDSHelpers in an open-source package for automatized pattern generation for nano-structuring. It allows exporting the pattern in the GDSII-

Helge Gehring 76 Dec 16, 2022
An(other) implementation of JSON Schema for Python

jsonschema jsonschema is an implementation of JSON Schema for Python. from jsonschema import validate # A sample schema, like what we'd get f

Julian Berman 4k Jan 04, 2023
ICS-Visualizer is an interactive Industrial Control Systems (ICS) network graph that contains up-to-date ICS metadata

ICS-Visualizer is an interactive Industrial Control Systems (ICS) network graph that contains up-to-date ICS metadata (Name, company, port, user manua

QeeqBox 2 Dec 13, 2021
Geospatial Data Visualization using PyGMT

Example script to visualize topographic data, earthquake data, and tomographic data on a map

Utpal Kumar 2 Jul 30, 2022
Resources for teaching & learning practical data visualization with python.

Practical Data Visualization with Python Overview All views expressed on this site are my own and do not represent the opinions of any entity with whi

Paul Jeffries 98 Sep 24, 2022