This is the official pytorch implementation for the paper: Instance Similarity Learning for Unsupervised Feature Representation.

Related tags

Deep LearningISL
Overview

ISL

This is the official pytorch implementation for the paper: Instance Similarity Learning for Unsupervised Feature Representation, which is accepted to ICCV2021. The code contains training and testing several network architecture (ResNet18, ResNet50 and AlexNet) on four datasets (SVHN, CIFAR10, CIFAR100 and ImageNet) using our proposed ISL method.

Quick Start

Prerequisites

  • python 3.5+
  • pytorch 1.0.0+
  • torchvision 0.2.1 (not compatible with higher version)
  • other packages like numpy and PIL

Dataset Preparation

Please follow the instruction in this to download the ImageNet dataset. For small datasets like SVHN, you can either download them manually or set the download parameter in torchvision.dataset True to download them automatically.

After downloading them, please put them in data/, an SSD is highly recommended for training on ImageNet.

Training and Testing

Small Datasets

For training on SVHN, CIFAR10 or CIFAR100, please run:

python small_main.py --data='data/' --arch='resnet18/resnet50/alexnet' --dataset='svhn/cifar10/cifar100'

The training code contains testing the weighted $k$NN on features with $k=200$ every 5 epochs. For testing an existing weight file, just run:

python small_main.py --data='data/' --arch='resnet18/resnet50/alexnet' --dataset='svhn/cifar10/cifar100' --test-only=True --recompute=True --resume='weight_file'

ImageNet

For training on ImageNet, just run:

python imagenet_main.py --data='data/' --arch='resnet18/resnet50/alexnet'

During training, we monitor the weighted $k$NN with $k=1$ every two epochs, that's because using $k=200$ will be slow on big dataset like ImageNet.

For testing using $k$NN with $k=200$, you can run:

python imagenet_main.py --data='data/' --arch='resnet18/resnet50/alexnet' --test-only=True --recompute=True --resume='weight_file'

To reproduce the ResNet ImageNet result in our paper, you need to run the code on a 16GB memory GPU like NVIDIA Tesla V100 (AlexNet can run on a 11 GB memory GPU like RTX 2080Ti). The performance will drop slightly if trained on two GPUs as observed in our experiments. Also, you may need to switch the training stage manually because sometimes the program just fails to identify the end of training GANs and it might not be able to use the best G for neighborhood mining. The total training time lasts for around 4 days in our experiments using a single GPU and batch size equals to 256.

Owner
IVG Lab, Department of Automation, Tsinghua Univeristy
Epidemiology analysis package

zEpid zEpid is an epidemiology analysis package, providing easy to use tools for epidemiologists coding in Python 3.5+. The purpose of this library is

Paul Zivich 111 Jan 08, 2023
Learning Saliency Propagation for Semi-supervised Instance Segmentation

Learning Saliency Propagation for Semi-supervised Instance Segmentation PyTorch Implementation This repository contains: the PyTorch implementation of

Berkeley DeepDrive 68 Oct 18, 2022
RID-Noise: Towards Robust Inverse Design under Noisy Environments

This is code of RID-Noise. Reproduce RID-Noise Results Toy tasks Please refer to the notebook ridnoise.ipynb to view experiments on three toy tasks. B

Thyrix 2 Nov 23, 2022
Exploiting Robust Unsupervised Video Person Re-identification

Exploiting Robust Unsupervised Video Person Re-identification Implementation of the proposed uPMnet. For the preprint, please refer to [Arxiv]. Gettin

1 Apr 09, 2022
Code release for NeRF (Neural Radiance Fields)

NeRF: Neural Radiance Fields Project Page | Video | Paper | Data Tensorflow implementation of optimizing a neural representation for a single scene an

6.5k Jan 01, 2023
Explicable Reward Design for Reinforcement Learning Agents [NeurIPS'21]

Explicable Reward Design for Reinforcement Learning Agents [NeurIPS'21]

3 May 12, 2022
Instance-conditional Knowledge Distillation for Object Detection

Instance-conditional Knowledge Distillation for Object Detection This is a MegEngine implementation of the paper "Instance-conditional Knowledge Disti

MEGVII Research 47 Nov 17, 2022
PyTorch inference for "Progressive Growing of GANs" with CelebA snapshot

Progressive Growing of GANs inference in PyTorch with CelebA training snapshot Description This is an inference sample written in PyTorch of the origi

320 Nov 21, 2022
A copy of Ares that costs 30 fucking dollars.

Finalement, j'ai décidé d'abandonner cette idée, je me suis comporté comme un enfant qui été en colère. Comme m'ont dit certaines personnes j'ai des c

Bleu 24 Apr 14, 2022
Feature board for ERPNext

ERPNext Feature Board Feature board for ERPNext Development Prerequisites k3d kubectl helm bench Install K3d Cluster # export K3D_FIX_CGROUPV2=1 # use

Revant Nandgaonkar 16 Nov 09, 2022
Securetar - A streaming wrapper around python tarfile and allow secure handling files and support encryption

Secure Tar Secure Tarfile library It's a streaming wrapper around python tarfile

Pascal Vizeli 2 Dec 09, 2022
Code for Transformer Hawkes Process, ICML 2020.

Transformer Hawkes Process Source code for Transformer Hawkes Process (ICML 2020). Run the code Dependencies Python 3.7. Anaconda contains all the req

Simiao Zuo 111 Dec 26, 2022
PyTorch implementation of MLP-Mixer

PyTorch implementation of MLP-Mixer MLP-Mixer: an all-MLP architecture composed of alternate token-mixing and channel-mixing operations. The token-mix

Duo Li 33 Nov 27, 2022
Single object tracking and segmentation.

Single/Multiple Object Tracking and Segmentation Codes and comparison of recent single/multiple object tracking and segmentation. News 💥 AutoMatch is

ZP ZHANG 385 Jan 02, 2023
Official Pytorch implementation of "CLIPstyler:Image Style Transfer with a Single Text Condition"

CLIPstyler Official Pytorch implementation of "CLIPstyler:Image Style Transfer with a Single Text Condition" Environment Pytorch 1.7.1, Python 3.6 $ c

201 Dec 29, 2022
Colar: Effective and Efficient Online Action Detection by Consulting Exemplars, CVPR 2022.

Colar: Effective and Efficient Online Action Detection by Consulting Exemplars This repository is the official implementation of Colar. In this work,

LeYang 246 Dec 13, 2022
Learning to Communicate with Deep Multi-Agent Reinforcement Learning in PyTorch

Learning to Communicate with Deep Multi-Agent Reinforcement Learning This is a PyTorch implementation of the original Lua code release. Overview This

Minqi 297 Dec 12, 2022
null

DeformingThings4D dataset Video | Paper DeformingThings4D is an synthetic dataset containing 1,972 animation sequences spanning 31 categories of human

208 Jan 03, 2023
😮The official implementation of "CoNeRF: Controllable Neural Radiance Fields" 😮

CoNeRF: Controllable Neural Radiance Fields This is the official implementation for "CoNeRF: Controllable Neural Radiance Fields" Project Page Paper V

Kacper Kania 61 Dec 24, 2022
PCGNN - Procedural Content Generation with NEAT and Novelty

PCGNN - Procedural Content Generation with NEAT and Novelty Generation Approach — Metrics — Paper — Poster — Examples PCGNN - Procedural Content Gener

Michael Beukman 8 Dec 10, 2022