CorrProxies - Optimizing Machine Learning Inference Queries with Correlative Proxy Models

Overview

CorrProxies

Declaration

This repo is for paper: Optimizing Machine Learning Inference Queries with Correlative Proxy Models.

Setup ENV

Quick Start

  1. We provide a fully ready Docker Image ready to use out-of-box.
  2. Optionally, you can also follow the steps to build your own testing environment.

The Provided Docker Environment

Steps to run the Docker Environment

  • Get the docker image from this link.
  • Load the docker image. docker load -i corrproxies-image.tar
  • Run the docker image in a container. docker run --name=CorrProxies -i -t -d corrproxies-image
    • it will return you the docker container ID, for example d979af9a17f23345cb2894b22dc8527680acdfd7a7e1aaed6a7a28ea134e66e6.
  • Use CLI to control the container with the specific ID generated. docker exec -it d979af9a17f23345cb2894b22dc8527680acdfd7a7e1aaed6a7a28ea134e66e6 /bin/zsh

ENV Spec

File structure:

  • The home directory for CorrProxies locates at /home/CorrProxies.
  • The Python executable locates at /home/anaconda3/envs/condaenv/bin/python3.
  • The models locate at /home/CorrProxies/model.
  • The datasets locate at /home/CorrProxies/data.
  • The starting scripts locate at /home/CorrProxies/scripts.

Build Your Own Environment

This instruction is based on a clean distribution of [email protected]

  1. Install pre-requisites.

    apt-get update && apt-get install -y build-essential

  2. Install Anaconda.

    • wget https://repo.anaconda.com/archive/Anaconda3-5.3.1-Linux-x86_64.sh && bash Anaconda3-5.3.1-Linux-x86_64.sh -b -p
    • export PATH=" /bin/:$PATH"
  3. Install [email protected] with Anaconda3.

    conda create -n condaenv python=3.6.6

  4. Activate the newly installed Python ENV.

    conda activate condaenv

  5. Install dependencies with pip.

    pip3 install -r requirements.txt

  6. Install Java (openjdk-8) (for standford-nlp usage).

    apt-get install -y openjdk-8-jdk

Queries & Datasets

  • We use Twitter text dataset, COCO image dataset and UCF101 video dataset as our benchmark datasets. Please see this page for examples of detailed Queries and Datasets examples we use in our experiments.

  • After you setup the environment, either manually or using the docker image provided by us, the next step is to download the datasets.

    • To get the COCO dataset: cd /home/CorrProxies/data/image/coco && ./get_coco_dataset.sh
    • To get the UCF101 dataset: cd /home/CorrProxies/data/video/ucf101 && wget -c https://www.crcv.ucf.edu/data/UCF101/UCF101.rar && unrar x UCF101.rar.

Execution

Please pull the latest code before executing the code. Command cd /home/CorrProxies && git pull

Run Operators Individually

To run and see each operator we used in our experiment, simply execute python3 . For example: python3 operators/ml_operators/image_video_operators/video_activity_recognition.py.

Run Experiments

We use scripts/run.sh to start experiments. The script will take in command line arguments.

  • Text(Twitter)

    • Since we do not provide text dataset, we will skip the experiment.
  • Image(COCO)

    Example: ./scripts/run.sh -w 2 -t 1 -i '1' -a 0.9 -s 3 -o 2 -e 1

  • Video(UCF101)

    Example: ./scripts/run.sh -w 2 -t 2 -i '1' -a 0.9 -s 3 -o 2 -e 1

  • arguments detail.

    • w int: experiment type in [1, 2, 3, 4] referring to /home/CorrProxies/ml_workflow/exps/WorkflowExp*.py;
    • t int: query type in [0, 1, 2]. Int 0, 1, 2 means queries on the Twitter, COCO, and UCF101 datasets, respectively;
    • i int: query index in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
    • a float: query accuracy;
    • s int: scheme in [0, 1, 2, 3, 4, 5, 6]. Int 0, 1, 2, 3, 4, 5, 6 means 'ORIG', 'NS', 'PP', 'CORE', 'COREa', 'COREh' and 'REORDER' schemes, respectively;
    • o int: number of threads used in optimization phase;
    • e int: number of threads used in execution phase after generating an optimized plan.
Owner
ZhihuiYangCS
ZhihuiYangCS
ETNA – time series forecasting framework

ETNA Time Series Library Predict your time series the easiest way Homepage | Documentation | Tutorials | Contribution Guide | Release Notes ETNA is an

Tinkoff.AI 675 Jan 08, 2023
Used Logistic Regression, Random Forest, and XGBoost to predict the outcome of Search & Destroy games from the Call of Duty World League for the 2018 and 2019 seasons.

Call of Duty World League: Search & Destroy Outcome Predictions Growing up as an avid Call of Duty player, I was always curious about what factors led

Brett Vogelsang 2 Jan 18, 2022
Deepchecks is a Python package for comprehensively validating your machine learning models and data with minimal effort

Deepchecks is a Python package for comprehensively validating your machine learning models and data with minimal effort

2.3k Jan 04, 2023
Predicting India’s COVID-19 Third Wave with LSTM

Predicting India’s COVID-19 Third Wave with LSTM Complete project of predicting new COVID-19 cases in the next 90 days with LSTM India is seeing a ste

Samrat Dutta 4 Jan 27, 2022
Dual Adaptive Sampling for Machine Learning Interatomic potential.

DAS Dual Adaptive Sampling for Machine Learning Interatomic potential. How to cite If you use this code in your research, please cite this using: Hong

6 Jul 06, 2022
A repository to work on Machine Learning course. Select an algorithm to classify writer's gender, of Hebrew texts.

MachineLearning A repository to work on Machine Learning course. Select an algorithm to classify writer's gender, of Hebrew texts. Tested algorithms:

Haim Adrian 1 Feb 01, 2022
STUMPY is a powerful and scalable Python library for computing a Matrix Profile, which can be used for a variety of time series data mining tasks

STUMPY STUMPY is a powerful and scalable library that efficiently computes something called the matrix profile, which can be used for a variety of tim

TD Ameritrade 2.5k Jan 06, 2023
PyHarmonize: Adding harmony lines to recorded melodies in Python

PyHarmonize: Adding harmony lines to recorded melodies in Python About To use this module, the user provides a wav file containing a melody, the key i

Julian Kappler 2 May 20, 2022
Banpei is a Python package of the anomaly detection.

Banpei Banpei is a Python package of the anomaly detection. Anomaly detection is a technique used to identify unusual patterns that do not conform to

Hirofumi Tsuruta 282 Jan 03, 2023
PyTorch extensions for high performance and large scale training.

Description FairScale is a PyTorch extension library for high performance and large scale training on one or multiple machines/nodes. This library ext

Facebook Research 2k Dec 28, 2022
This machine-learning algorithm takes in data from the last 60 days and tries to predict tomorrow's price of any crypto you ask it.

Crypto-Currency-Predictor This machine-learning algorithm takes in data from the last 60 days and tries to predict tomorrow's price of any crypto you

Hazim Arafa 6 Dec 04, 2022
This repository has datasets containing information of Uber pickups in NYC from April 2014 to September 2014 and January to June 2015. data Analysis , virtualization and some insights are gathered here

uber-pickups-analysis Data Source: https://www.kaggle.com/fivethirtyeight/uber-pickups-in-new-york-city Information about data set The dataset contain

B DEVA DEEKSHITH 1 Nov 03, 2021
Auto updating website that tracks closed & open issues/PRs on scikit-learn/scikit-learn.

Repository Status for Scikit-learn Live webpage Auto updating website that tracks closed & open issues/PRs on scikit-learn/scikit-learn. Running local

Thomas J. Fan 6 Dec 27, 2022
Merlion: A Machine Learning Framework for Time Series Intelligence

Merlion is a Python library for time series intelligence. It provides an end-to-end machine learning framework that includes loading and transforming data, building and training models, post-processi

Salesforce 2.8k Jan 05, 2023
cleanlab is the data-centric ML ops package for machine learning with noisy labels.

cleanlab is the data-centric ML ops package for machine learning with noisy labels. cleanlab cleans labels and supports finding, quantifying, and lear

Cleanlab 51 Nov 28, 2022
Climin is a Python package for optimization, heavily biased to machine learning scenarios

climin climin is a Python package for optimization, heavily biased to machine learning scenarios distributed under the BSD 3-clause license. It works

Biomimetic Robotics and Machine Learning at Technische Universität München 177 Sep 02, 2022
Test symmetries with sklearn decision tree models

Test symmetries with sklearn decision tree models Setup Begin from an environment with a recent version of python 3. source setup.sh Leave the enviro

Rupert Tombs 2 Jul 19, 2022
Pragmatic AI Labs 421 Dec 31, 2022
Simulate & classify transient absorption spectroscopy (TAS) spectral features for bulk semiconducting materials (Post-DFT)

PyTASER PyTASER is a Python (3.9+) library and set of command-line tools for classifying spectral features in bulk materials, post-DFT. The goal of th

Materials Design Group 4 Dec 27, 2022
icepickle is to allow a safe way to serialize and deserialize linear scikit-learn models

icepickle It's a cooler way to store simple linear models. The goal of icepickle is to allow a safe way to serialize and deserialize linear scikit-lea

vincent d warmerdam 24 Dec 09, 2022