HAIS_2GNN: 3D Visual Grounding with Graph and Attention

Overview

HAIS_2GNN: 3D Visual Grounding with Graph and Attention

This repository is for the HAIS_2GNN research project.

Tao Gu, Yue Chen

Introduction

The motivation of this project is to improve the accuracy of 3D visual grounding. In this report, we propose a new model, named HAIS_2GNN based on the InstanceRefer model, to tackle the problem of insufficient connections between instance proposals. Our model incorporates a powerful instance segmentation model HAIS and strengthens the instance features by the structure of graph and attention, so that the text and point cloud can be better matched together. Experiments confirm that our method outperforms the InstanceRefer on ScanRefer validation datasets. Link to the technical report

Setup

The code is tested on Ubuntu 20.04.3 LTS with Python 3.9.7 PyTorch 1.10.1 CUDA 11.3.1 installed.

conda install pytorch==1.10.1 torchvision==0.11.2 cudatoolkit=11.3 -c pytorch

Install the necessary packages listed out in requirements.txt:

pip install -r requirements.txt

After all packages are properly installed, please run the following commands to compile the torchsaprse v1.4.0:

sudo apt-get install libsparsehash-dev
pip install --upgrade git+https://github.com/mit-han-lab/[email protected]

Before moving on to the next step, please don't forget to set the project root path to the CONF.PATH.BASE in lib/config.py.

Data preparation

  1. Download the ScanRefer dataset and unzip it under data/.
  2. Downloadand the preprocessed GLoVE embeddings (~990MB) and put them under data/.
  3. Download the ScanNetV2 dataset and put (or link) scans/ under (or to) data/scannet/scans/ (Please follow the ScanNet Instructions for downloading the ScanNet dataset). After this step, there should be folders containing the ScanNet scene data under the data/scannet/scans/ with names like scene0000_00
  4. Used official and pre-trained HAIS generate panoptic segmentation in PointGroupInst/. We will provide the pre-trained data soon.
  5. Pre-processed instance labels, and new data should be generated in data/scannet/pointgroup_data/
cd data/scannet/
python prepare_data.py --split train --pointgroupinst_path [YOUR_PATH]
python prepare_data.py --split val   --pointgroupinst_path [YOUR_PATH]
python prepare_data.py --split test  --pointgroupinst_path [YOUR_PATH]

Finally, the dataset folder should be organized as follows.

InstanceRefer
├── data
│   ├── glove.p
│   ├── ScanRefer_filtered.json
│   ├── ...
│   ├── scannet
│   │  ├── meta_data
│   │  ├── pointgroup_data
│   │  │  ├── scene0000_00_aligned_bbox.npy
│   │  │  ├── scene0000_00_aligned_vert.npy
│   │  ├──├──  ... ...

Training

Train the InstanceRefer model. You can change hyper-parameters in config/InstanceRefer.yaml:

python scripts/train.py --log_dir HAIS_2GNN

Evaluation

You need specific the use_checkpoint with the folder that contains model.pth in config/InstanceRefer.yaml and run with:

python scripts/eval.py

Pre-trained Models

Input [email protected] Unique [email protected] Checkpoints
xyz+rgb 39.24 33.66 will be released soon

TODO

  • Add pre-trained HAIS dataset.
  • Release pre-trained model.
  • Merge HAIS in an end-to-end manner.
  • Upload to ScanRefer benchmark

Changelog

02/09/2022: Released HAIS_2GNN

Acknowledgement

This work is a research project conducted by Tao Gu and Yue Chen for ADL4CV:Visual Computing course at the Technical University of Munich.

We acknowledge that our work is based on ScanRefer, InstanceRefer, HAIS, torchsaprse, and pytorch_geometric.

License

This repository is released under MIT License (see LICENSE file for details).

Owner
Yue Chen
Yue Chen
Rootski - Full codebase for rootski.io (without the data)

📣 Welcome to the Rootski codebase! This is the codebase for the application run

Eric 20 Nov 18, 2022
A tool helps build a talk preview image by combining the given background image and talk event description

talk-preview-img-builder A tool helps build a talk preview image by combining the given background image and talk event description Installation and U

PyCon Taiwan 4 Aug 20, 2022
A fast hierarchical dimensionality reduction algorithm.

h-NNE: Hierarchical Nearest Neighbor Embedding A fast hierarchical dimensionality reduction algorithm. h-NNE is a general purpose dimensionality reduc

Marios Koulakis 35 Dec 12, 2022
PUA Programming Language written in Python.

pua-lang PUA Programming Language written in Python. Installation git clone https://github.com/zhaoyang97/pua-lang.git cd pua-lang pip install . Try

zy 4 Feb 19, 2022
TFPNER: Exploration on the Named Entity Recognition of Token Fused with Part-of-Speech

TFPNER TFPNER: Exploration on the Named Entity Recognition of Token Fused with Part-of-Speech Named entity recognition (NER), which aims at identifyin

1 Feb 07, 2022
Faster, modernized fork of the language identification tool langid.py

py3langid py3langid is a fork of the standalone language identification tool langid.py by Marco Lui. Original license: BSD-2-Clause. Fork license: BSD

Adrien Barbaresi 12 Nov 05, 2022
Implementing SimCSE(paper, official repository) using TensorFlow 2 and KR-BERT.

KR-BERT-SimCSE Implementing SimCSE(paper, official repository) using TensorFlow 2 and KR-BERT. Training Unsupervised python train_unsupervised.py --mi

Jeong Ukjae 27 Dec 12, 2022
A raytrace framework using taichi language

ti-raytrace The code use Taichi programming language Current implement acceleration lvbh disney brdf How to run First config your anaconda workspace,

蕉太狼 73 Dec 11, 2022
OceanScript is an Esoteric language used to encode and decode text into a formulation of characters

OceanScript is an Esoteric language used to encode and decode text into a formulation of characters - where the final result looks like waves in the ocean.

PyKaldi is a Python scripting layer for the Kaldi speech recognition toolkit.

PyKaldi is a Python scripting layer for the Kaldi speech recognition toolkit. It provides easy-to-use, low-overhead, first-class Python wrappers for t

922 Dec 31, 2022
Modular and extensible speech recognition library leveraging pytorch-lightning and hydra.

Lightning ASR Modular and extensible speech recognition library leveraging pytorch-lightning and hydra What is Lightning ASR • Installation • Get Star

Soohwan Kim 40 Sep 19, 2022
PyTorch Implementation of the paper Single Image Texture Translation for Data Augmentation

SITT The repo contains official PyTorch Implementation of the paper Single Image Texture Translation for Data Augmentation. Authors: Boyi Li Yin Cui T

Boyi Li 52 Jan 05, 2023
⚡ boost inference speed of T5 models by 5x & reduce the model size by 3x using fastT5.

Reduce T5 model size by 3X and increase the inference speed up to 5X. Install Usage Details Functionalities Benchmarks Onnx model Quantized onnx model

Kiran R 399 Jan 05, 2023
Share constant definitions between programming languages and make your constants constant again

Introduction Reconstant lets you share constant and enum definitions between programming languages. Constants are defined in a yaml file and converted

Natan Yellin 47 Sep 10, 2022
SASE : Self-Adaptive noise distribution network for Speech Enhancement with heterogeneous data of Cross-Silo Federated learning

SASE : Self-Adaptive noise distribution network for Speech Enhancement with heterogeneous data of Cross-Silo Federated learning We propose a SASE mode

Tower 1 Nov 20, 2021
用Resnet101+GPT搭建一个玩王者荣耀的AI

基于pytorch框架用resnet101加GPT搭建AI玩王者荣耀 本源码模型主要用了SamLynnEvans Transformer 的源码的解码部分。以及pytorch自带的预训练模型"resnet101-5d3b4d8f.pth"

冯泉荔 2.2k Jan 03, 2023
A Python script that compares files in directories

compare-files A Python script that compares files in different directories, this is similar to the command filecmp.cmp(f1, f2). I made this script in

Colvin 1 Oct 15, 2021
Pre-training BERT masked language models with custom vocabulary

Pre-training BERT Masked Language Models (MLM) This repository contains the method to pre-train a BERT model using custom vocabulary. It was used to p

Stella Douka 14 Nov 02, 2022
Rhyme with AI

Local development Create a conda virtual environment and activate it: conda env create --file environment.yml conda activate rhyme-with-ai Install the

GoDataDriven 28 Nov 21, 2022
A number of methods in order to perform Natural Language Processing on live data derived from Twitter

A number of methods in order to perform Natural Language Processing on live data derived from Twitter

1 Nov 24, 2021