Code for ACL'2021 paper WARP 🌀 Word-level Adversarial ReProgramming

Overview

🌀 WARP: Word-level Adversarial ReProgramming

This repository contains code for ACL'2021 Paper WARP: Word-level Adversarial ReProgramming.

WARP adds a few trainable embeddings around the input, which causes the masked language model to predict the sentiment of the sentence in the SST-2 task.

Transfer learning from pretrained language models recently became the dominant approach for solving many NLP tasks. A common approach to transfer learning for multiple tasks that maximize parameter sharing trains one or more task-specific layers on top of the language model.

In this paper, we present an alternative approach based on adversarial reprogramming, which extends earlier work on automatic prompt generation. Adversarial reprogramming attempts to learn task-specific word embeddings that, when concatenated to the input text, instruct the language model to solve the specified task.

Using up to 25K trainable parameters per task, this approach outperforms all existing methods that use up to 25M trainable parameters on the public leaderboard of the GLUE benchmark. Our method, initialized with task-specific human-readable prompts, also works in a few-shot setting, outperforming GPT-3 on two SuperGLUE tasks after training on just 32 samples.

Few-Shot Results

Set Model CB RTE
F1 Acc. Acc.
dev
GPT-3 Small 26.1 42.9 52.3
GPT-3 Med 40.4 58.9 48.4
GPT-3 57.2 82.1 72.9
PET (ALBERT) 59.4 85.1 69.8
iPET (ALBERT) 92.4 92.9 74.0
WARPinit (ALBERT) 84.0 87.5 71.8
test
GPT-3 52.0 75.6 69.0
PET (ALBERT) 60.2 87.2 67.2
iPET (ALBERT) 79.9 88.8 70.8
WARPinit (ALBERT) 70.2 82.4 69.1
Results on SuperGLUE benchmark. The results for the test set are obtained from SuperGLUE evaluation server. We only show systems performing in a similar few-shot training setup using 32 examples.

Setup

The code requires YerevaNN's internal version of allennlp

git clone https://github.com/YerevaNN/allennlp
git checkout warp
pip install .

Training

Linear Probing

for DATASET in 'cola' 'sst2' 'mrpc' 'qqp' 'stsb' 'mnli' 'rte' 'wnli' 'qnli'
do
    export HPARAMS='{
        "dataset": "'$DATASET'",
        "lr": 0.0001,
        "num_epochs": 20,
        "prompts": [],
        "reorder_optimized": false,
        "max_batch_size": 8,
        "max_tokens_sq": 262144, "on_logits":  false, "pooling_index":  null, "seed":  1}'
    python -m allennlp train \
    -s .aim/baseline-linear-${DATASET} configs/warp.jsonnet
done

WARP_0

"], "reorder_optimized": true, "max_batch_size": 8, "max_tokens_sq": 262144, "on_logits": "pre_decoder_layer_norm", "pooling_index": 1, "seed": 1 }' python -m allennlp train \ -s .aim/baseline-warp_0-${DATASET} configs/warp.jsonnet done ">
for DATASET in 'cola' 'sst2' 'mrpc' 'qqp' 'stsb' 'mnli' 'rte' 'wnli' 'qnli'
do
    export HPARAMS='{
        "dataset": "'$DATASET'",
        "lr": 0.0001,
        "num_epochs": 20,
        "prompts": [null, "
   
    "],
   
        "reorder_optimized": true,
        "max_batch_size": 8,
        "max_tokens_sq": 262144,
        "on_logits": "pre_decoder_layer_norm",
        "pooling_index": 1,
        "seed": 1
    }'
    python -m allennlp train \
    -s .aim/baseline-warp_0-${DATASET} configs/warp.jsonnet
done

Training WARP

", "prompts":[-10,-11,-12,-13,-14,null,-15,-16,-17,-18,-19," ",-20,-21,-22,-23,-24,null,-25,-26,-27,-28,-29], "seed":1, "transformer_model":"roberta-large" }' python -m allennlp train \ -s .aim/t-${DATASET} configs/warp.jsonnet ">
export DATASET="rte"
export HPARAMS='{
    "benchmark":"super_glue",
    "classifier_init":null,
    "dataset":"'$DATASET'",
    "ensure_whitespace_between":false,
    "lr":0.001,
    "max_batch_size":8,
    "max_tokens_sq":262144,
    "num_epochs":30,
    "prompt_better_init":"
    
     ",
    
    "prompts":[-10,-11,-12,-13,-14,null,-15,-16,-17,-18,-19,"
    
     ",-20,-21,-22,-23,-24,null,-25,-26,-27,-28,-29],
    
    "seed":1,
    "transformer_model":"roberta-large"
}'
python -m allennlp train \
-s .aim/t-${DATASET} configs/warp.jsonnet

WARP_init

Few-Shot Experiments

", [-20, ","], null, [-29, "!"],-30,-31], "seed":3, "str_cut_frac":0, "transformer_model":"albert-xxlarge-v2", "validation_metric": null }' python -m allennlp train \ -s .aim/t-${DATASET}-`date +%s` configs/warp.jsonnet ">
export HPARAMS='{
    "benchmark":"super_glue",
    "classifier_init": {
        "entailment": " yes",
        "not_entailment": " instead"
    },
    "dataset":"few_rte",
    "eval_mode":false,
    "lr":0.001,
    "max_batch_size":2,
    "max_tokens_sq":131072,
    "num_epochs":100,
    "num_gradient_accumulation_steps":2,
    "prompt_better_init": "[PAD]",
    "prompts":[-10,-11,[-14,"\""],null,[-15,"\""],  [-16, "?"], "
   
    ", [-20, ","], null, [-29, "!"],-30,-31],
   
    "seed":3,
    "str_cut_frac":0,
    "transformer_model":"albert-xxlarge-v2",
    "validation_metric": null
}'
python -m allennlp train \
-s .aim/t-${DATASET}-`date +%s` configs/warp.jsonnet
",[-20,","],null,[-29,"!"],-30,-31], "seed":1, "str_cut_frac":0.06, "transformer_model":"albert-xxlarge-v2", "validation_metric":"+training_val_metric" }' python -m allennlp train \ -s .aim/t-${DATASET}-`date +%s` configs/warp.jsonnet ">
export HPARAMS='{
   "benchmark":"super_glue",
   "classifier_init":{
      "entailment":" yes",
      "not_entailment":" instead"
   },
   "dataset":"few_rte",
   "grad_norm":1,
   "lr":0.001,
   "max_batch_size":2,
   "max_tokens_sq":131072,
   "num_epochs":30,
   "num_gradient_accumulation_steps":2,
   "prompt_better_init":"[PAD]",
   "prompts":[-10,-11,[-14,"\""],null,[-15,"\""],[-16,"?"],"
   
    ",[-20,","],null,[-29,"!"],-30,-31],
   
   "seed":1,
   "str_cut_frac":0.06,
   "transformer_model":"albert-xxlarge-v2",
   "validation_metric":"+training_val_metric"
}'
python -m allennlp train \
-s .aim/t-${DATASET}-`date +%s` configs/warp.jsonnet

Evaluation

python -m allennlp predict \
  --silent --use-dataset-reader --cuda-device 0 \
  --batch-size 50 \
  --predictor glue --output-file v0.1/AX.tsv /data/arp/.aim/H-93ae5ae9 ax/test
python -m allennlp predict \
  --silent --use-dataset-reader --cuda-device 0 \
  --batch-size 50 \
  --predictor glue --output-file v0.1/MNLI-m.tsv /data/arp/.aim/H-93ae5ae9 test_matched

Citation

If you want to refer to our work use this bibTeX:

@inproceedings{hambardzumyan-etal-2021-warp,
    title = "{WARP}: {W}ord-level {A}dversarial {R}e{P}rogramming",
    author = "Hambardzumyan, Karen  and
      Khachatrian, Hrant  and
      May, Jonathan",
    booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)",
    month = aug,
    year = "2021",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.acl-long.381",
    doi = "10.18653/v1/2021.acl-long.381",
    pages = "4921--4933"
}
A PaddlePaddle implementation of Time Interval Aware Self-Attentive Sequential Recommendation.

TiSASRec.paddle A PaddlePaddle implementation of Time Interval Aware Self-Attentive Sequential Recommendation. Introduction 论文:Time Interval Aware Sel

Paddorch 2 Nov 28, 2021
Pytorch implementation of the paper "COAD: Contrastive Pre-training with Adversarial Fine-tuning for Zero-shot Expert Linking."

Expert-Linking Pytorch implementation of the paper "COAD: Contrastive Pre-training with Adversarial Fine-tuning for Zero-shot Expert Linking." This is

BoChen 12 Jan 01, 2023
GMFlow: Learning Optical Flow via Global Matching

GMFlow GMFlow: Learning Optical Flow via Global Matching Authors: Haofei Xu, Jing Zhang, Jianfei Cai, Hamid Rezatofighi, Dacheng Tao We streamline the

Haofei Xu 298 Jan 04, 2023
Malware Analysis Neural Network project.

MalanaNeuralNetwork Description Malware Analysis Neural Network project. Table of Contents Getting Started Requirements Installation Clone Set-Up VENV

2 Nov 13, 2021
Generic Event Boundary Detection: A Benchmark for Event Segmentation

Generic Event Boundary Detection: A Benchmark for Event Segmentation We release our data annotation & baseline codes for detecting generic event bound

47 Nov 22, 2022
CMT: Convolutional Neural Networks Meet Vision Transformers

CMT: Convolutional Neural Networks Meet Vision Transformers [arxiv] 1. Introduction This repo is the CMT model which impelement with pytorch, no refer

FlyEgle 83 Dec 30, 2022
Implementation of the paper ''Implicit Feature Refinement for Instance Segmentation''.

Implicit Feature Refinement for Instance Segmentation This repository is an official implementation of the ACM Multimedia 2021 paper Implicit Feature

Lufan Ma 17 Dec 28, 2022
Learning Continuous Signed Distance Functions for Shape Representation

DeepSDF This is an implementation of the CVPR '19 paper "DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation" by Park et a

Meta Research 1.1k Jan 01, 2023
A Learning-based Camera Calibration Toolbox

Learning-based Camera Calibration A Learning-based Camera Calibration Toolbox Paper The pdf file can be found here. @misc{zhang2022learningbased,

Eason 14 Dec 21, 2022
The Codebase for Causal Distillation for Language Models.

Causal Distillation for Language Models Zhengxuan Wu*,Atticus Geiger*, Josh Rozner, Elisa Kreiss, Hanson Lu, Thomas Icard, Christopher Potts, Noah D.

Zen 20 Dec 31, 2022
Detectron2 is FAIR's next-generation platform for object detection and segmentation.

Detectron2 is Facebook AI Research's next generation software system that implements state-of-the-art object detection algorithms. It is a ground-up r

Facebook Research 23.3k Jan 08, 2023
CasualHealthcare's Pneumonia detection with Artificial Intelligence (Convolutional Neural Network)

CasualHealthcare's Pneumonia detection with Artificial Intelligence (Convolutional Neural Network) This is PneumoniaDiagnose, an artificially intellig

Azhaan 2 Jan 03, 2022
Project repo for Learning Category-Specific Mesh Reconstruction from Image Collections

Learning Category-Specific Mesh Reconstruction from Image Collections Angjoo Kanazawa*, Shubham Tulsiani*, Alexei A. Efros, Jitendra Malik University

438 Dec 22, 2022
Little tool in python to watch anime from the terminal (the better way to watch anime)

ani-cli Script working again :), thanks to the fork by Dink4n for the alternative approach to by pass the captcha on gogoanime A cli to browse and wat

Harshith 4.5k Dec 31, 2022
Code base for NeurIPS 2021 publication titled Kernel Functional Optimisation (KFO)

KernelFunctionalOptimisation Code base for NeurIPS 2021 publication titled Kernel Functional Optimisation (KFO) We have conducted all our experiments

2 Jun 29, 2022
ROS Basics and TurtleSim

Waypoint Follower Anna Garverick This package draws given waypoints, then waits for a service call with a start position to send the turtle to each wa

Anna Garverick 1 Dec 13, 2021
Crowd-sourced Annotation of Human Motion.

Motion Annotation Tool Live: https://motion-annotation.humanoids.kit.edu Paper: The KIT Motion-Language Dataset Installation Start by installing all P

Matthias Plappert 4 May 25, 2020
A Python package for faster, safer, and simpler ML processes

Bender 🤖 A Python package for faster, safer, and simpler ML processes. Why use bender? Bender will make your machine learning processes, faster, safe

Otovo 6 Dec 13, 2022
Multi-angle c(q)uestion answering

Macaw Introduction Macaw (Multi-angle c(q)uestion answering) is a ready-to-use model capable of general question answering, showing robustness outside

AI2 430 Jan 04, 2023
Autotype on websites that have copy-paste disabled like Moodle, HackerEarth contest etc.

Autotype A quick and small python script that helps you autotype on websites that have copy paste disabled like Moodle, HackerEarth contests etc as it

Tushar 32 Nov 03, 2022