PyTorch implementation of GLOM

Overview

GLOM

PyTorch implementation of GLOM, Geoffrey Hinton's new idea that integrates concepts from neural fields, top-down-bottom-up processing, and attention (consensus between columns).

1. Overview

An implementation of Geoffrey Hinton's paper "How to represent part-whole hierarchies in a neural network" for MNIST Dataset.

2. Usage

2 - 1. PyTorch version

import torch
from pyglom import GLOM

model = GLOM(
    dim = 512,         # dimension
    levels = 6,        # number of levels
    image_size = 224,  # image size
    patch_size = 14    # patch size
)

img = torch.randn(1, 3, 224, 224)
levels = model(img, iters = 12) # (1, 256, 6, 512) - (batch - patches - levels - dimension)

Pass the return_all = True keyword argument on forward, and you will be returned all the column and level states per iteration, (including the initial state, number of iterations + 1). You can then use this to attach any losses to any level outputs at any time step.

It also gives you access to all the level data across iterations for clustering, from which one can inspect for the theorized islands in the paper.

import torch
from pyglom import GLOM

model = GLOM(
    dim = 512,         # dimension
    levels = 6,        # number of levels
    image_size = 224,  # image size
    patch_size = 14    # patch size
)

img = torch.randn(1, 3, 224, 224)
all_levels = model(img, iters = 12, return_all = True) # (13, 1, 256, 6, 512) - (time, batch, patches, levels, dimension)

# get the top level outputs after iteration 6
top_level_output = all_levels[7, :, :, -1] # (1, 256, 512) - (batch, patches, dimension)

Denoising self-supervised learning for encouraging emergence, as described by Hinton

import torch
import torch.nn.functional as F
from torch import nn
from einops.layers.torch import Rearrange

from pyglom import GLOM

model = GLOM(
    dim = 512,         # dimension
    levels = 6,        # number of levels
    image_size = 224,  # image size
    patch_size = 14    # patch size
)

img = torch.randn(1, 3, 224, 224)
noised_img = img + torch.randn_like(img)

all_levels = model(noised_img, return_all = True)

patches_to_images = nn.Sequential(
    nn.Linear(512, 14 * 14 * 3),
    Rearrange('b (h w) (p1 p2 c) -> b c (h p1) (w p2)', p1 = 14, p2 = 14, h = (224 // 14))
)

top_level = all_levels[7, :, :, -1]  # get the top level embeddings after iteration 6
recon_img = patches_to_images(top_level)

# do self-supervised learning by denoising

loss = F.mse_loss(img, recon_img)
loss.backward()

You can pass in the state of the column and levels back into the model to continue where you left off (perhaps if you are processing consecutive frames of a slow video, as mentioned in the paper)

import torch
from pyglom import GLOM

model = GLOM(
    dim = 512,
    levels = 6,
    image_size = 224,
    patch_size = 14
)

img1 = torch.randn(1, 3, 224, 224)
img2 = torch.randn(1, 3, 224, 224)
img3 = torch.randn(1, 3, 224, 224)

levels1 = model(img1, iters = 12)                   # image 1 for 12 iterations
levels2 = model(img2, levels = levels1, iters = 10) # image 2 for 10 iteratoins
levels3 = model(img3, levels = levels2, iters = 6)  # image 3 for 6 iterations

2 - 2. PyTorch-Lightning version

The pyglom also provides the GLOM model that is implemented with PyTorch-Lightning.

from torchvision.datasets import MNIST
from torch.utils.data import DataLoader, random_split
from torchvision import transforms
import os
from pytorch_lightning.callbacks import ModelCheckpoint


from pyglom.glom import LightningGLOM


dataset = MNIST(os.getcwd(), download=True, transform=transforms.Compose([
    transforms.Resize((256, 256)),
    transforms.ToTensor()
]))
train, val = random_split(dataset, [55000, 5000])

glom = LightningGLOM(
    dim=256,         # dimension
    levels=6,        # number of levels
    image_size=256,  # image size
    patch_size=16,   # patch size
    img_channels=1
)

gpus = torch.cuda.device_count()
trainer = pl.Trainer(gpus=gpus, max_epochs=5)
trainer.fit(glom, DataLoader(train, batch_size=8, num_workers=2), DataLoader(val, batch_size=8, num_workers=2))

3. ToDo

  • contrastive / consistency regularization of top-ish levels

4. Citations

@misc{hinton2021represent,
    title   = {How to represent part-whole hierarchies in a neural network}, 
    author  = {Geoffrey Hinton},
    year    = {2021},
    eprint  = {2102.12627},
    archivePrefix = {arXiv},
    primaryClass = {cs.CV}
}
You might also like...
HashNeRF-pytorch - Pure PyTorch Implementation of NVIDIA paper on Instant Training of Neural Graphics primitives
HashNeRF-pytorch - Pure PyTorch Implementation of NVIDIA paper on Instant Training of Neural Graphics primitives

HashNeRF-pytorch Instant-NGP recently introduced a Multi-resolution Hash Encodin

Generic template to bootstrap your PyTorch project with PyTorch Lightning, Hydra, W&B, and DVC.

NN Template Generic template to bootstrap your PyTorch project. Click on Use this Template and avoid writing boilerplate code for: PyTorch Lightning,

A PyTorch Extension: Tools for easy mixed precision and distributed training in Pytorch

This repository holds NVIDIA-maintained utilities to streamline mixed precision and distributed training in Pytorch. Some of the code here will be included in upstream Pytorch eventually. The intention of Apex is to make up-to-date utilities available to users as quickly as possible.

Objective of the repository is to learn and build machine learning models using Pytorch. 30DaysofML Using Pytorch
Objective of the repository is to learn and build machine learning models using Pytorch. 30DaysofML Using Pytorch

30 Days Of Machine Learning Using Pytorch Objective of the repository is to learn and build machine learning models using Pytorch. List of Algorithms

Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch
Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks
Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks

Amazon Forest Computer Vision Satellite Image tagging code using PyTorch / Keras Here is a sample of images we had to work with Source: https://www.ka

The Incredible PyTorch: a curated list of tutorials, papers, projects, communities and more relating to PyTorch.
The Incredible PyTorch: a curated list of tutorials, papers, projects, communities and more relating to PyTorch.

This is a curated list of tutorials, projects, libraries, videos, papers, books and anything related to the incredible PyTorch. Feel free to make a pu

Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks
Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks

Amazon Forest Computer Vision Satellite Image tagging code using PyTorch / Keras Here is a sample of images we had to work with Source: https://www.ka

A bunch of random PyTorch models using PyTorch's C++ frontend
A bunch of random PyTorch models using PyTorch's C++ frontend

PyTorch Deep Learning Models using the C++ frontend Gettting started Clone the repo 1. https://github.com/mrdvince/pytorchcpp 2. cd fashionmnist or

Releases(0.0.3)
Owner
Yeonwoo Sung
2020-09-21 ~ 2022-06-20 RoK (Korea) Air Force
Yeonwoo Sung
Luminous is a framework for testing the performance of Embodied AI (EAI) models in indoor tasks.

Luminous is a framework for testing the performance of Embodied AI (EAI) models in indoor tasks. Generally, we intergrete different kind of functional

28 Jan 08, 2023
This project aim to create multi-label classification annotation tool to boost annotation speed and make it more easier.

This project aim to create multi-label classification annotation tool to boost annotation speed and make it more easier.

4 Aug 02, 2022
TACTO: A Fast, Flexible and Open-source Simulator for High-Resolution Vision-based Tactile Sensors

TACTO: A Fast, Flexible and Open-source Simulator for High-Resolution Vision-based Tactile Sensors This package provides a simulator for vision-based

Facebook Research 255 Dec 27, 2022
Convolutional neural network web app trained to track our infant’s sleep schedule using our Google Nest camera.

Machine Learning Sleep Schedule Tracker What is it? Convolutional neural network web app trained to track our infant’s sleep schedule using our Google

g-parki 7 Jul 15, 2022
Moer Grounded Image Captioning by Distilling Image-Text Matching Model

Moer Grounded Image Captioning by Distilling Image-Text Matching Model Requirements Python 3.7 Pytorch 1.2 Prepare data Please use git clone --recurse

YE Zhou 60 Dec 16, 2022
Cross-modal Retrieval using Transformer Encoder Reasoning Networks (TERN). With use of Metric Learning and FAISS for fast similarity search on GPU

Cross-modal Retrieval using Transformer Encoder Reasoning Networks This project reimplements the idea from "Transformer Reasoning Network for Image-Te

Minh-Khoi Pham 5 Nov 05, 2022
Answer a series of contextually-dependent questions like they may occur in natural human-to-human conversations.

SCAI-QReCC-21 [leaderboards] [registration] [forum] [contact] [SCAI] Answer a series of contextually-dependent questions like they may occur in natura

19 Sep 28, 2022
Implementation of "Unsupervised Domain Adaptive 3D Detection with Multi-Level Consistency"

Unsupervised Domain Adaptive 3D Detection with Multi-Level Consistency (ICCV2021) Paper Link: https://arxiv.org/abs/2107.11355 This implementation bui

32 Nov 17, 2022
Official implementation for paper: A Latent Transformer for Disentangled Face Editing in Images and Videos.

A Latent Transformer for Disentangled Face Editing in Images and Videos Official implementation for paper: A Latent Transformer for Disentangled Face

InterDigital 108 Dec 09, 2022
A Vision Transformer approach that uses concatenated query and reference images to learn the relationship between query and reference images directly.

A Vision Transformer approach that uses concatenated query and reference images to learn the relationship between query and reference images directly.

24 Dec 13, 2022
VIMPAC: Video Pre-Training via Masked Token Prediction and Contrastive Learning

This is a release of our VIMPAC paper to illustrate the implementations. The pretrained checkpoints and scripts will be soon open-sourced in HuggingFace transformers.

Hao Tan 74 Dec 03, 2022
Starter Code for VALUE benchmark

StarterCode for VALUE Benchmark This is the starter code for VALUE Benchmark [website], [paper]. This repository currently supports all baseline model

VALUE Benchmark 73 Dec 09, 2022
A 3D sparse LBM solver implemented using Taichi

taichi_LBM3D Background Taichi_LBM3D is a 3D lattice Boltzmann solver with Multi-Relaxation-Time collision scheme and sparse storage structure impleme

Jianhui Yang 121 Jan 06, 2023
Image super-resolution through deep learning

srez Image super-resolution through deep learning. This project uses deep learning to upscale 16x16 images by a 4x factor. The resulting 64x64 images

David Garcia 5.3k Dec 28, 2022
Repository of best practices for deep learning in Julia, inspired by fastai

FastAI Docs: Stable | Dev FastAI.jl is inspired by fastai, and is a repository of best practices for deep learning in Julia. Its goal is to easily ena

FluxML 532 Jan 02, 2023
JstDoS - HTTP Protocol Stack Remote Code Execution Vulnerability

jstDoS If you are going to skid that, please give credits ! ^^ ¿How works? This

apolo 4 Feb 11, 2022
Add gui for YoloV5 using PyQt5

HEAD 更新2021.08.16 **添加图片和视频保存功能: 1.图片和视频按照当前系统时间进行命名 2.各自检测结果存放入output文件夹 3.摄像头检测的默认设备序号更改为0,减少调试报错 温馨提示: 1.项目放置在全英文路径下,防止项目报错 2.默认使用cpu进行检测,自

Ruihao Wang 65 Dec 27, 2022
JORLDY an open-source Reinforcement Learning (RL) framework provided by KakaoEnterprise

Repository for Open Source Reinforcement Learning Framework JORLDY

Kakao Enterprise Corp. 330 Dec 30, 2022
Dense Prediction Transformers

Vision Transformers for Dense Prediction This repository contains code and models for our paper: Vision Transformers for Dense Prediction René Ranftl,

Intel ISL (Intel Intelligent Systems Lab) 1.3k Dec 28, 2022
"Exploring Vision Transformers for Fine-grained Classification" at CVPRW FGVC8

FGVC8 Exploring Vision Transformers for Fine-grained Classification paper presented at the CVPR 2021, The Eight Workshop on Fine-Grained Visual Catego

Marcos V. Conde 19 Dec 06, 2022