Robust Instance Segmentation through Reasoning about Multi-Object Occlusion [CVPR 2021]

Overview

Robust Instance Segmentation through Reasoning about Multi-Object Occlusion [CVPR 2021]

figure1

Abstract

Analyzing complex scenes with DNN is a challenging task, particularly when images contain multiple objects that partially occlude each other. Existing approaches to image analysis mostly process objects independently and do not take into account the relative occlusion of nearby objects. We propose a deep network for multi-object instance segmentation that is robust to occlusion and can be trained from bounding box supervision only.

We also introduce an Occlusion Challenge dataset generated from real-world segmented objects with accurate annotations and propose a taxonomy of occlusion scenarios that pose a particular challenge for computer vision.

occ_challenge_dataset


NOTICE

dataset links and model will be released in a few days. Update: 18 June

Requirments

The code uses Python 3.6 and it is tested on PyTorch GPU version 1.2, with CUDA-10.0 and cuDNN-7.5.

Installation

  1. Clone the repository with:
git clone https://github.com/XD7479/Multi-Object-Occlusion.git
cd Multi-Object-Occlusion
  1. Install requirments:
pip install -r requirements.txt

Datasets

  1. Download the KINS dataset here and the Occlusion Challenge dataset here.
  2. Enter the project folder and make links for the datasets:
ln -s  kins
ln -s  occ_challenge
  1. Download the pre-trained model here.
  2. Make links for the pre-trained model:
ln -s  models
  1. Check the configuration file configs.py for the dataset and backbone you're using:
dataset_eval = 'occ_challenge'      # kins, occ_challenge
nn_type = 'resnext'             # vgg, resnext

  1. Run the evaluation code with:
python3 eval_meanIoU.py

Segmentation Demo

demo

Citation

@misc{yuan2021robust,
      title={Robust Instance Segmentation through Reasoning about Multi-Object Occlusion}, 
      author={Xiaoding Yuan and Adam Kortylewski and Yihong Sun and Alan Yuille},
      booktitle = {Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)},
      month = jun,
      year = {2021},
      month_numeric = {6}
}

Contact

If you have any questions you can contact Xiaoding Yuan by [email protected].

Owner
Irene Yuan
Irene Yuan
TransMVSNet: Global Context-aware Multi-view Stereo Network with Transformers.

TransMVSNet This repository contains the official implementation of the paper: "TransMVSNet: Global Context-aware Multi-view Stereo Network with Trans

旷视研究院 3D 组 155 Dec 29, 2022
A collection of IPython notebooks covering various topics.

ipython-notebooks This repo contains various IPython notebooks I've created to experiment with libraries and work through exercises, and explore subje

John Wittenauer 2.6k Jan 01, 2023
torchbearer: A model fitting library for PyTorch

Note: We're moving to PyTorch Lightning! Read about the move here. From the end of February, torchbearer will no longer be actively maintained. We'll

632 Dec 13, 2022
Pytorch implementation of Cut-Thumbnail in the paper Cut-Thumbnail:A Novel Data Augmentation for Convolutional Neural Network.

Cut-Thumbnail (Accepted at ACM MULTIMEDIA 2021) Tianshu Xie, Xuan Cheng, Xiaomin Wang, Minghui Liu, Jiali Deng, Tao Zhou, Ming Liu This is the officia

3 Apr 12, 2022
The implementation of PEMP in paper "Prior-Enhanced Few-Shot Segmentation with Meta-Prototypes"

Prior-Enhanced network with Meta-Prototypes (PEMP) This is the PyTorch implementation of PEMP. Overview of PEMP Meta-Prototypes & Adaptive Prototypes

Jianwei ZHANG 8 Oct 14, 2021
Face recognize system

FRS Face_recognize_system This project contains my work that target on solving some problems of FRS: Face detection: Retinaface Face anti-spoofing: Fo

Tran Anh Tuan 4 Nov 18, 2021
Radar-to-Lidar: Heterogeneous Place Recognition via Joint Learning

radar-to-lidar-place-recognition This page is the coder of a pre-print, implemented by PyTorch. If you have some questions on this project, please fee

Huan Yin 37 Oct 09, 2022
VACA: Designing Variational Graph Autoencoders for Interventional and Counterfactual Queries

VACA Code repository for the paper "VACA: Designing Variational Graph Autoencoders for Interventional and Counterfactual Queries (arXiv)". The impleme

Pablo Sánchez-Martín 16 Oct 10, 2022
Full Stack Deep Learning Labs

Full Stack Deep Learning Labs Welcome! Project developed during lab sessions of the Full Stack Deep Learning Bootcamp. We will build a handwriting rec

Full Stack Deep Learning 1.2k Dec 31, 2022
Adaptive Graph Convolution for Point Cloud Analysis

Adaptive Graph Convolution for Point Cloud Analysis This repository contains the implementation of AdaptConv for point cloud analysis. Adaptive Graph

64 Dec 21, 2022
PFENet: Prior Guided Feature Enrichment Network for Few-shot Segmentation (TPAMI).

PFENet This is the implementation of our paper PFENet: Prior Guided Feature Enrichment Network for Few-shot Segmentation that has been accepted to IEE

DV Lab 230 Dec 31, 2022
Trained on Simulated Data, Tested in the Real World

Trained on Simulated Data, Tested in the Real World

livox 43 Nov 18, 2022
"Neural Turing Machine" in Tensorflow

Neural Turing Machine in Tensorflow Tensorflow implementation of Neural Turing Machine. This implementation uses an LSTM controller. NTM models with m

Taehoon Kim 1k Dec 06, 2022
a pytorch implementation of auto-punctuation learned character by character

Learning Auto-Punctuation by Reading Engadget Articles Link to Other of my work 🌟 Deep Learning Notes: A collection of my notes going from basic mult

Ge Yang 137 Nov 09, 2022
A Factor Model for Persistence in Investment Manager Performance

Factor-Model-Manager-Performance A Factor Model for Persistence in Investment Manager Performance I apply methods and processes similar to those used

Omid Arhami 1 Dec 01, 2021
GrabGpu_py: a scripts for grab gpu when gpu is free

GrabGpu_py a scripts for grab gpu when gpu is free. WaitCondition: gpu_memory

tianyuluan 3 Jun 18, 2022
Code to train models from "Paraphrastic Representations at Scale".

Paraphrastic Representations at Scale Code to train models from "Paraphrastic Representations at Scale". The code is written in Python 3.7 and require

John Wieting 71 Dec 19, 2022
Neural Re-rendering for Full-frame Video Stabilization

NeRViS: Neural Re-rendering for Full-frame Video Stabilization Project Page | Video | Paper | Google Colab Setup Setup environment for [Yu and Ramamoo

Yu-Lun Liu 9 Jun 17, 2022
Robust and Accurate Object Detection via Self-Knowledge Distillation

Robust and Accurate Object Detection via Self-Knowledge Distillation paper:https://arxiv.org/abs/2111.07239 Environments Python 3.7 Cuda 10.1 Prepare

Weipeng Xu 6 Jul 01, 2022
(CVPR 2022) A minimalistic mapless end-to-end stack for joint perception, prediction, planning and control for self driving.

LAV Learning from All Vehicles Dian Chen, Philipp Krähenbühl CVPR 2022 (also arXiV 2203.11934) This repo contains code for paper Learning from all veh

Dian Chen 300 Dec 15, 2022