Pytorch implementation of Depth-conditioned Dynamic Message Propagation forMonocular 3D Object Detection

Related tags

Deep LearningDDMP-3D
Overview

DDMP-3D

Pytorch implementation of Depth-conditioned Dynamic Message Propagation forMonocular 3D Object Detection, a paper on CVPR2021.

Instroduction

The objective of this paper is to learn context- and depthaware feature representation to solve the problem of monocular 3D object detection. We make following contributions: (i) rather than appealing to the complicated pseudo-LiDAR based approach, we propose a depth-conditioned dynamic message propagation (DDMP) network to effectively integrate the multi-scale depth information with the image context; (ii) this is achieved by first adaptively sampling context-aware nodes in the image context and then dynamically predicting hybrid depth-dependent filter weights and affinity matrices for propagating information; (iii) by augmenting a center-aware depth encoding (CDE) task, our method successfully alleviates the inaccurate depth prior; (iv) we thoroughly demonstrate the effectiveness of our proposed approach and show state-of-the-art results among the monocular-based approaches on the KITTI benchmark dataset.

arch

Requirements

Installation

Our code is based on DGMN, please refer to the installation for maskrcnn-benchmark compilation.

  • My settings

    conda activate maskrcnn_benchmark 
      (maskrcnn_benchmark)  conda list
      python				3.8.5
      pytorch				1.4.0          
      cudatoolkit				10.0.130  
      torchfile				0.1.0
      torchvision				0.5.0
      apex					0.1 

Data preparation

Download and unzip the full KITTI detection dataset to the folder /path/to/kitti/. Then place a softlink (or the actual data) in data/kitti/. There are two widely used training/validation set splits for the KITTI dataset. Here we only show the setting of split1, you can set split2 accordingly.

cd D4LCN
ln -s /path/to/kitti data/kitti
ln -s /path/to/kitti/testing data/kitti_split1/testing

Our method uses DORN (or other monocular depth models) to extract depth maps for all images. You can download and unzip the depth maps extracted by DORN here and put them (or softlink) to the folder data/kitti/depth_2/. (You can also change the path in the scripts setup_depth.py). Additionally, we also generate the xyz map (xy are the values along x and y axises on 2D plane, and z is the depth value) and save as pickle files and then operate like depth map.

Then use the following scripts to extract the data splits, which use softlinks to the above directory for efficient storage.

python data/kitti_split1/setup_split.py
python data/kitti_split1/setup_depth.py

Next, build the KITTI devkit eval for split1.

sh data/kitti_split1/devkit/cpp/build.sh

Lastly, build the nms modules

cd lib/nms
make

Training

You can change the batch_size according to the number of GPUs, default: 8 GPUs with batch_size = 5 on Tesla v100(32G).

If you want to utilize the resnet backbone pre-trained on the COCO dataset, it can be downloaded from git or Google Drive, default: ImageNet pretrained pytorch model, we downloaded the model and saved at 'data/'. You can also set use_corner and corner_in_3d to False for quick training.

See the configurations in scripts/config/config.py and scripts/train.py for details.

sh train.sh

Testing

Generate the results using:

python scripts/test.py

we afford the generated results for evaluation due to the tedious process of data preparation process. Unzip the output.zip and then execute the above evaluation commonds. We show the results in paper, and supplementary. Additionally, we also trained a model replacing the depth map (only contains value of z) with coordinate xyz (xy are the values along x and y axises on 2D plane), which achieves the best performance. You can download the best model on Google Drive.

Models [email protected]. [email protected] [email protected]
model in paper 23.13 / 27.46 31.14 / 37.71 19.45 / 24.53
model in supp 23.17 / 27.85 32.40 / 42.05 19.35 / 24.91
model with coordinate(xyz), config 23.53 / 28.16 30.21 / 38.78 19.72 / 24.80

Acknowledgements

We thank D4LCN and DGMN for their great works and repos.

Citation

If you find this project useful in your research, please consider citing:

@inproceedings{wang2021depth,
  title={Depth-conditioned Dynamic Message Propagation for Monocular 3D Object Detection},
  author={Wang, Li and Du, Liang and Ye, Xiaoqing and Fu, Yanwei and Guo, Guodong and Xue, Xiangyang and Feng, Jianfeng and Zhang, Li},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={454--463},
  year={2021}
}

Contact

For questions regarding DDMP-3D, feel free to post here or directly contact the authors ([email protected]).

Owner
Li Wang
Ph.D
Li Wang
Official Pytorch Implementation of Relational Self-Attention: What's Missing in Attention for Video Understanding

Relational Self-Attention: What's Missing in Attention for Video Understanding This repository is the official implementation of "Relational Self-Atte

mandos 43 Dec 07, 2022
Author: Wenhao Yu ([email protected]). ACL 2022. Commonsense Reasoning on Knowledge Graph for Text Generation

Diversifying Commonsense Reasoning Generation on Knowledge Graph Introduction -- This is the pytorch implementation of our ACL 2022 paper "Diversifyin

DM2 Lab @ ND 61 Dec 30, 2022
yolox_backbone is a deep-learning library and is a collection of YOLOX Backbone models.

YOLOX-Backbone yolox-backbone is a deep-learning library and is a collection of YOLOX backbone models. Install pip install yolox-backbone Load a Pret

Yonghye Kwon 21 Dec 28, 2022
Pytorch-diffusion - A basic PyTorch implementation of 'Denoising Diffusion Probabilistic Models'

PyTorch implementation of 'Denoising Diffusion Probabilistic Models' This reposi

Arthur Juliani 76 Jan 07, 2023
CMT: Convolutional Neural Networks Meet Vision Transformers

CMT: Convolutional Neural Networks Meet Vision Transformers [arxiv] 1. Introduction This repo is the CMT model which impelement with pytorch, no refer

FlyEgle 83 Dec 30, 2022
Monocular Depth Estimation - Weighted-average prediction from multiple pre-trained depth estimation models

merged_depth runs (1) AdaBins, (2) DiverseDepth, (3) MiDaS, (4) SGDepth, and (5) Monodepth2, and calculates a weighted-average per-pixel absolute dept

Pranav 39 Nov 21, 2022
Pytorch-3dunet - 3D U-Net model for volumetric semantic segmentation written in pytorch

pytorch-3dunet PyTorch implementation 3D U-Net and its variants: Standard 3D U-Net based on 3D U-Net: Learning Dense Volumetric Segmentation from Spar

Adrian Wolny 1.3k Dec 28, 2022
Official Pytorch implementation for "End2End Occluded Face Recognition by Masking Corrupted Features, TPAMI 2021"

End2End Occluded Face Recognition by Masking Corrupted Features This is the Pytorch implementation of our TPAMI 2021 paper End2End Occluded Face Recog

Haibo Qiu 25 Oct 31, 2022
A real-time speech emotion recognition application using Scikit-learn and gradio

Speech-Emotion-Recognition-App A real-time speech emotion recognition application using Scikit-learn and gradio. Requirements librosa==0.6.3 numpy sou

Son Tran 6 Oct 04, 2022
Code and data of the Fine-Grained R2R Dataset proposed in paper Sub-Instruction Aware Vision-and-Language Navigation

Fine-Grained R2R Code and data of the Fine-Grained R2R Dataset proposed in the EMNLP2020 paper Sub-Instruction Aware Vision-and-Language Navigation. C

YicongHong 34 Nov 15, 2022
Free-duolingo-plus - Duolingo account creator that uses your invite code to get you free duolingo plus

free-duolingo-plus duolingo account creator that uses your invite code to get yo

1 Jan 06, 2022
A simple version for graphfpn

GraphFPN: Graph Feature Pyramid Network for Object Detection Download graph-FPN-main.zip For training , run: python train.py For test with Graph_fpn

WorldGame 67 Dec 25, 2022
Contrastive Learning of Image Representations with Cross-Video Cycle-Consistency

Contrastive Learning of Image Representations with Cross-Video Cycle-Consistency This is a official implementation of the CycleContrast introduced in

13 Nov 14, 2022
Continual learning with sketched Jacobian approximations

Continual learning with sketched Jacobian approximations This repository contains the code for reproducing figures and results in the paper ``Provable

Machine Learning and Information Processing Laboratory 1 Jun 30, 2022
Back to Basics: Efficient Network Compression via IMP

Back to Basics: Efficient Network Compression via IMP Authors: Max Zimmer, Christoph Spiegel, Sebastian Pokutta This repository contains the code to r

IOL Lab @ ZIB 1 Nov 19, 2021
An open source object detection toolbox based on PyTorch

MMDetection is an open source object detection toolbox based on PyTorch. It is a part of the OpenMMLab project.

Bo Chen 24 Dec 28, 2022
PyTorch Implementations for DeeplabV3 and PSPNet

Pytorch-segmentation-toolbox DOC Pytorch code for semantic segmentation. This is a minimal code to run PSPnet and Deeplabv3 on Cityscape dataset. Shor

Zilong Huang 746 Dec 15, 2022
Code for the ICME 2021 paper "Exploring Driving-Aware Salient Object Detection via Knowledge Transfer"

TSOD Code for the ICME 2021 paper "Exploring Driving-Aware Salient Object Detection via Knowledge Transfer" Usage For training, open train_test, run p

Jinming Su 2 Dec 23, 2021
Avalanche RL: an End-to-End Library for Continual Reinforcement Learning

Avalanche RL: an End-to-End Library for Continual Reinforcement Learning Avalanche Website | Getting Started | Examples | Tutorial | API Doc | Paper |

ContinualAI 43 Dec 24, 2022
Learning Tracking Representations via Dual-Branch Fully Transformer Networks

Learning Tracking Representations via Dual-Branch Fully Transformer Networks DualTFR ⭐ We achieves the runner-ups for both VOT2021ST (short-term) and

phiphi 19 May 04, 2022