SemTorch

Overview

SemTorch

This repository contains different deep learning architectures definitions that can be applied to image segmentation.

All the architectures are implemented in PyTorch and can been trained easily with FastAI 2.

In Deep-Tumour-Spheroid repository can be found and example of how to apply it with a custom dataset, in that case brain tumours images are used.

These architectures are classified as:

  • Semantic Segmentation: each pixel of an image is linked to a class label. Semantic Segmentation
  • Instance Segmentation: is similar to semantic segmentation, but goes a bit deeper, it identifies , for each pixel, the object instance it belongs to. Instance Segmentation
  • Salient Object Detection (Binary clases only): detection of the most noticeable/important object in an image. Salient Object Detection

🚀 Getting Started

To start using this package, install it using pip:

For example, for installing it in Ubuntu use:

pip3 install SemTorch

👩‍💻 Usage

This package creates an abstract API to access a segmentation model of different architectures. This method returns a FastAI 2 learner that can be combined with all the fastai's functionalities.

# SemTorch
from semtorch import get_segmentation_learner

learn = get_segmentation_learner(dls=dls, number_classes=2, segmentation_type="Semantic Segmentation",
                                 architecture_name="deeplabv3+", backbone_name="resnet50", 
                                 metrics=[tumour, Dice(), JaccardCoeff()],wd=1e-2,
                                 splitter=segmentron_splitter).to_fp16()

You can find a deeper example in Deep-Tumour-Spheroid repository, in this repo the package is used for the segmentation of brain tumours.

def get_segmentation_learner(dls, number_classes, segmentation_type, architecture_name, backbone_name,
                             loss_func=None, opt_func=Adam, lr=defaults.lr, splitter=trainable_params, 
                             cbs=None, pretrained=True, normalize=True, image_size=None, metrics=None, 
                             path=None, model_dir='models', wd=None, wd_bn_bias=False, train_bn=True,
                             moms=(0.95,0.85,0.95)):

This function return a learner for the provided architecture and backbone

Parameters:

  • dls (DataLoader): the dataloader to use with the learner
  • number_classes (int): the number of clases in the project. It should be >=2
  • segmentation_type (str): just Semantic Segmentation accepted for now
  • architecture_name (str): name of the architecture. The following ones are supported: unet, deeplabv3+, hrnet, maskrcnn and u2^net
  • backbone_name (str): name of the backbone
  • loss_func (): loss function.
  • opt_func (): opt function.
  • lr (): learning rates
  • splitter (): splitter function for freazing the learner
  • cbs (List[cb]): list of callbacks
  • pretrained (bool): it defines if a trained backbone is needed
  • normalize (bool): if normalization is applied
  • image_size (int): REQUIRED for MaskRCNN. It indicates the desired size of the image.
  • metrics (List[metric]): list of metrics
  • path (): path parameter
  • model_dir (str): the path in which save models
  • wd (float): wieght decay
  • wd_bn_bias (bool):
  • train_bn (bool):
  • moms (Tuple(float)): tuple of different momentuns

Returns:

  • learner: value containing the learner object

Supported configs

Architecture supported config backbones
unet Semantic Segmentation,binary Semantic Segmentation,multiple resnet18, resnet34, resnet50, resnet101, resnet152, xresnet18, xresnet34, xresnet50, xresnet101, xresnet152, squeezenet1_0, squeezenet1_1, densenet121, densenet169, densenet201, densenet161, vgg11_bn, vgg13_bn, vgg16_bn, vgg19_bn, alexnet
deeplabv3+ Semantic Segmentation,binary Semantic Segmentation,multiple resnet18, resnet34, resnet50, resnet101, resnet152, resnet50c, resnet101c, resnet152c, xception65, mobilenet_v2
hrnet Semantic Segmentation,binary Semantic Segmentation,multiple hrnet_w18_small_model_v1, hrnet_w18_small_model_v2, hrnet_w18, hrnet_w30, hrnet_w32, hrnet_w48
maskrcnn Semantic Segmentation,binary resnet50
u2^net Semantic Segmentation,binary small, normal

📩 Contact

📧 [email protected]

💼 Linkedin David Lacalle Castillo

Owner
David Lacalle Castillo
Machine Learning Engineer
David Lacalle Castillo
Automatically download multiple papers by keywords in CVPR

CVFPaperHelper Automatically download multiple papers by keywords in CVPR Install mkdir PapersToRead cd PaperToRead pip install requests tqdm git clon

46 Jun 08, 2022
Autonomous Driving project for Euro Truck Simulator 2

hope-autonomous-driving Autonomous Driving project for Euro Truck Simulator 2 Video: How is it working ? In this video, the program processes the imag

Umut Görkem Kocabaş 36 Nov 06, 2022
End-to-end pipeline for real-time scene text detection and recognition.

Real-time-Scene-Text-Detection-and-Recognition-System End-to-end pipeline for real-time scene text detection and recognition. The detection model use

Fangneng Zhan 89 Aug 04, 2022
Tool which allow you to detect and translate text.

Text detection and recognition This repository contains tool which allow to detect region with text and translate it one by one. Description Two pretr

Damian Panek 176 Nov 28, 2022
A novel region proposal network for more general object detection ( including scene text detection ).

DeRPN: Taking a further step toward more general object detection DeRPN is a novel region proposal network which concentrates on improving the adaptiv

Deep Learning and Vision Computing Lab, SCUT 151 Dec 12, 2022
OCRmyPDF adds an OCR text layer to scanned PDF files, allowing them to be searched

OCRmyPDF adds an OCR text layer to scanned PDF files, allowing them to be searched or copy-pasted. ocrmypdf # it's a scriptable c

jbarlow83 7.9k Jan 03, 2023
A little but useful tool to explore OCR data extracted with `pytesseract` and `opencv`

Screenshot OCR Tool Extracting data from screen time screenshots in iOS and Android. We are exploring 3 options: Simple OCR with no text position usin

Gabriele Marini 1 Dec 07, 2021
The code for CVPR2022 paper "Likert Scoring with Grade Decoupling for Long-term Action Assessment".

Likert Scoring with Grade Decoupling for Long-term Action Assessment This is the code for CVPR2022 paper "Likert Scoring with Grade Decoupling for Lon

10 Oct 21, 2022
Fatigue Driving Detection Based on Dlib

Fatigue Driving Detection Based on Dlib

5 Dec 14, 2022
This is a passport scanning web service to help you scan, identify and validate your passport created with a simple and flexible design and ready to be integrated right into your system!

Passport-Recogniton-System This is a passport scanning web service to help you scan, identify and validate your passport created with a simple and fle

Mo'men Ashraf Muhamed 7 Jan 04, 2023
Implement 'Single Shot Text Detector with Regional Attention, ICCV 2017 Spotlight'

SSTDNet Implement 'Single Shot Text Detector with Regional Attention, ICCV 2017 Spotlight' using pytorch. This code is work for general object detecti

HotaekHan 84 Jan 05, 2022
Amazing 3D explosion animation using Pygame module.

3D Explosion Animation 💣 💥 🔥 Amazing explosion animation with Pygame. 💣 Explosion physics An Explosion instance is made of a set of Particle objec

Dylan Tintenfich 12 Mar 11, 2022
Rotational region detection based on Faster-RCNN.

R2CNN_Faster_RCNN_Tensorflow Abstract This is a tensorflow re-implementation of R2CNN: Rotational Region CNN for Orientation Robust Scene Text Detecti

UCAS-Det 581 Nov 22, 2022
TensorFlow Implementation of FOTS, Fast Oriented Text Spotting with a Unified Network.

FOTS: Fast Oriented Text Spotting with a Unified Network I am still working on this repo. updates and detailed instructions are coming soon! Table of

Masao Taketani 52 Nov 11, 2022
Framework for the Complete Gaze Tracking Pipeline

Framework for the Complete Gaze Tracking Pipeline The figure below shows a general representation of the camera-to-screen gaze tracking pipeline [1].

Pascal 20 Jan 06, 2023
Connect Aseprite to Blender for painting pixelart textures in real time

Pribambase Pribambase is a small tool that connects Aseprite and Blender, to allow painting with instant viewport feedback and all functionality of ex

117 Jan 03, 2023
Layout Analysis Evaluator for the ICDAR 2017 competition on Layout Analysis for Challenging Medieval Manuscripts

LayoutAnalysisEvaluator Layout Analysis Evaluator for: ICDAR 2019 Historical Document Reading Challenge on Large Structured Chinese Family Records ICD

17 Dec 08, 2022
Image Smoothing and Blurring Using OpenCV

Image-Smoothing-and-Blurring-Using-OpenCV This repository contains codes for performing image smoothing and blurring using OpenCV. There are different

Happy N. Monday 3 Feb 15, 2022
Code for CVPR'2022 paper ✨ "Predict, Prevent, and Evaluate: Disentangled Text-Driven Image Manipulation Empowered by Pre-Trained Vision-Language Model"

PPE ✨ Repository for our CVPR'2022 paper: Predict, Prevent, and Evaluate: Disentangled Text-Driven Image Manipulation Empowered by Pre-Trained Vision-

Zipeng Xu 34 Nov 28, 2022
Official implementation of Character Region Awareness for Text Detection (CRAFT)

CRAFT: Character-Region Awareness For Text detection Official Pytorch implementation of CRAFT text detector | Paper | Pretrained Model | Supplementary

Clova AI Research 2.5k Jan 03, 2023