Official Pytorch implementation of Test-Agnostic Long-Tailed Recognition by Test-Time Aggregating Diverse Experts with Self-Supervision.

Overview

Test-Agnostic Long-Tailed Recognition

This repository is the official Pytorch implementation of Test-Agnostic Long-Tailed Recognition by Test-Time Aggregating Diverse Experts with Self-Supervision.

  • TADE (our method) innovates the expert training scheme by introducing diversity-promoting expertise-guided losses, which train different experts to handle distinct class distributions. In this way, the learned experts would be more diverse than existing multi-expert methods, leading to better ensemble performance, and aggregatedly simulate a wide spectrum of possible class distributions.
  • TADE develops a new self-supervised method, namely prediction stability maximization, to adaptively aggregate these experts for better handling unknown test distribution, using unlabeled test class data.

Results

ImageNet-LT (ResNeXt-50)

Long-tailed recognition with uniform test class distribution:

Methods MACs(G) Top-1 acc. Model
Softmax 4.26 48.0
RIDE 6.08 56.3
TADE (ours) 6.08 58.8 Download

Test-agnostic long-tailed recognition:

Methods MACs(G) Forward-50 Forward-10 Uniform Backward-10 Backward-50
Softmax 4.26 66.1 60.3 48.0 34.9 27.6
RIDE 6.08 67.6 64.0 56.3 48.7 44.0
TADE (ours) 6.08 69.4 65.4 58.8 54.5 53.1

CIFAR100-Imbalance ratio 100 (ResNet-32)

Long-tailed recognition with uniform test class distribution:

Methods MACs(G) Top-1 acc.
Softmax 0.07 41.4
RIDE 0.11 48.0
TADE (ours) 0.11 49.8

Test-agnostic long-tailed recognition:

Methods MACs(G) Forward-50 Forward-10 Uniform Backward-10 Backward-50
Softmax 0.07 62.3 56.2 41.4 25.8 17.5
RIDE 0.11 63.0 57.0 48.0 35.4 29.3
TADE (ours) 0.11 65.9 58.3 49.8 43.9 42.4

Places-LT (ResNet-152)

Long-tailed recognition with uniform test class distribution:

Methods MACs(G) Top-1 acc.
Softmax 11.56 31.4
RIDE 13.18 40.3
TADE (ours) 13.18 40.9

Test-agnostic long-tailed recognition:

Methods MACs(G) Forward-50 Forward-10 Uniform Backward-10 Backward-50
Softmax 11.56 45.6 40.2 31.4 23.4 19.4
RIDE 13.18 43.1 41.6 40.3 38.2 36.9
TADE (ours) 13.18 46.4 43.3 40.9 41.4 41.6

iNaturalist 2018 (ResNet-50)

Long-tailed recognition with uniform test class distribution:

Methods MACs(G) Top-1 acc.
Softmax 4.14 64.7
RIDE 5.80 71.8
TADE (ours) 5.80 72.9

Test-agnostic long-tailed recognition:

Methods MACs(G) Forward-3 Forward-2 Uniform Backward-2 Backward-3
Softmax 4.14 65.4 65.5 64.7 64.0 63.4
RIDE 5.80 71.5 71.9 71.8 71.9 71.8
TADE (ours) 5.80 72.3 72.5 72.9 73.5 73.3

Requirements

  • To install requirements:
pip install -r requirements.txt

Hardware requirements

8 GPUs with >= 11G GPU RAM are recommended. Otherwise the model with more experts may not fit in, especially on datasets with more classes (the FC layers will be large). We do not support CPU training, but CPU inference could be supported by slight modification.

Datasets

Four bechmark datasets

  • Please download these datasets and put them to the /data file.
  • ImageNet-LT and Places-LT can be found at here.
  • iNaturalist data should be the 2018 version from here.
  • CIFAR-100 will be downloaded automatically with the dataloader.
data
├── ImageNet_LT
│   ├── test
│   ├── train
│   └── val
├── CIFAR100
│   └── cifar-100-python
├── Place365
│   ├── data_256
│   ├── test_256
│   └── val_256
└── iNaturalist 
    ├── test2018
    └── train_val2018

Txt files

  • We provide txt files for test-agnostic long-tailed recognition for ImageNet-LT, Places-LT and iNaturalist 2018. CIFAR-100 will be generated automatically with the code.
  • For iNaturalist 2018, please unzip the iNaturalist_train.zip.
data_txt
├── ImageNet_LT
│   ├── ImageNet_LT_backward2.txt
│   ├── ImageNet_LT_backward5.txt
│   ├── ImageNet_LT_backward10.txt
│   ├── ImageNet_LT_backward25.txt
│   ├── ImageNet_LT_backward50.txt
│   ├── ImageNet_LT_forward2.txt
│   ├── ImageNet_LT_forward5.txt
│   ├── ImageNet_LT_forward10.txt
│   ├── ImageNet_LT_forward25.txt
│   ├── ImageNet_LT_forward50.txt
│   ├── ImageNet_LT_test.txt
│   ├── ImageNet_LT_train.txt
│   ├── ImageNet_LT_uniform.txt
│   └── ImageNet_LT_val.txt
├── Places_LT_v2
│   ├── Places_LT_backward2.txt
│   ├── Places_LT_backward5.txt
│   ├── Places_LT_backward10.txt
│   ├── Places_LT_backward25.txt
│   ├── Places_LT_backward50.txt
│   ├── Places_LT_forward2.txt
│   ├── Places_LT_forward5.txt
│   ├── Places_LT_forward10.txt
│   ├── Places_LT_forward25.txt
│   ├── Places_LT_forward50.txt
│   ├── Places_LT_test.txt
│   ├── Places_LT_train.txt
│   ├── Places_LT_uniform.txt
│   └── Places_LT_val.txt
└── iNaturalist18
    ├── iNaturalist18_backward2.txt
    ├── iNaturalist18_backward3.txt
    ├── iNaturalist18_forward2.txt
    ├── iNaturalist18_forward3.txt
    ├── iNaturalist18_train.txt
    ├── iNaturalist18_uniform.txt
    └── iNaturalist18_val.txt 

Pretrained models

  • For the training on Places-LT, we follow previous method and use the pre-trained model.
  • Please download the checkpoint. Unzip and move the checkpoint files to /model/pretrained_model_places/.

Script

ImageNet-LT

Training

  • To train the expertise-diverse model, run this command:
python train.py -c configs/config_imagenet_lt_resnext50_tade.json

Evaluate

  • To evaluate expertise-diverse model on the uniform test class distribution, run:
python test.py -r checkpoint_path
  • To evaluate expertise-diverse model on agnostic test class distributions, run:
python test_all_imagenet.py -r checkpoint_path

Test-time training

  • To test-time train the expertise-diverse model for agnostic test class distributions, run:
python test_train_imagenet.py -c configs/test_time_imagenet_lt_resnext50_tade.json -r checkpoint_path

CIFAR100-LT

Training

  • To train the expertise-diverse model, run this command:
python train.py -c configs/config_cifar100_ir100_tade.json
  • One can change the imbalance ratio from 100 to 10/50 by changing the config file.

Evaluate

  • To evaluate expertise-diverse model on the uniform test class distribution, run:
python test.py -r checkpoint_path
  • To evaluate expertise-diverse model on agnostic test class distributions, run:
python test_all_cifar.py -r checkpoint_path

Test-time training

  • To test-time train the expertise-diverse model for agnostic test class distributions, run:
python test_train_cifar.py -c configs/test_time_cifar100_ir100_tade.json -r checkpoint_path
  • One can change the imbalance ratio from 100 to 10/50 by changing the config file.

Places-LT

Training

  • To train the expertise-diverse model, run this command:
python train.py -c configs/config_places_lt_resnet152_tade.json

Evaluate

  • To evaluate expertise-diverse model on the uniform test class distribution, run:
python test_places.py -r checkpoint_path
  • To evaluate expertise-diverse model on agnostic test class distributions, run:
python test_all_places.py -r checkpoint_path

Test-time training

  • To test-time train the expertise-diverse model for agnostic test class distributions, run:
python test_train_places.py -c configs/test_time_places_lt_resnet152_tade.json -r checkpoint_path

iNaturalist 2018

Training

  • To train the expertise-diverse model, run this command:
python train.py -c configs/config_iNaturalist_resnet50_tade.json

Evaluate

  • To evaluate expertise-diverse model on the uniform test class distribution, run:
python test.py -r checkpoint_path
  • To evaluate expertise-diverse model on agnostic test class distributions, run:
python test_all_inat.py -r checkpoint_path

Test-time training

  • To test-time train the expertise-diverse model for agnostic test class distributions, run:
python test_train_inat.py -c configs/test_time_iNaturalist_resnet50_tade.json -r checkpoint_path

Citation

If you find our work inspiring or use our codebase in your research, please cite our work.

@article{zhang2021test,
  title={Test-Agnostic Long-Tailed Recognition by Test-Time Aggregating Diverse Experts with Self-Supervision},
  author={Zhang, Yifan and Hooi, Bryan and Hong, Lanqing and Feng, Jiashi},
  journal={arXiv},
  year={2021}
}

Acknowledgements

This is a project based on this pytorch template.

The mutli-expert framework are based on RIDE. The data generation of agnostic test class distributions takes references from LADE.

Owner
vanint
vanint
Build Text Rerankers with Deep Language Models

Reranker is a lightweight, effective and efficient package for training and deploying deep languge model reranker in information retrieval (IR), question answering (QA) and many other natural languag

Luyu Gao 140 Dec 06, 2022
Auto translate textbox from Japanese to English or Indonesia

priconne-auto-translate Auto translate textbox from Japanese to English or Indonesia How to use Install python first, Anaconda is recommended Install

Aji Priyo Wibowo 5 Aug 25, 2022
BeautyNet is an AI powered model which can tell you whether you're beautiful or not.

BeautyNet BeautyNet is an AI powered model which can tell you whether you're beautiful or not. Download Dataset from here:https://www.kaggle.com/gpios

Ansh Gupta 0 May 06, 2022
Mednlp - Medical natural language parsing and utility library

Medical natural language parsing and utility library A natural language medical

Paul Landes 3 Aug 24, 2022
This is a MD5 password/passphrase brute force tool

CROWES-PASS-CRACK-TOOl This is a MD5 password/passphrase brute force tool How to install: Do 'git clone https://github.com/CROW31/CROWES-PASS-CRACK-TO

9 Mar 02, 2022
aMLP Transformer Model for Japanese

aMLP-japanese Japanese aMLP Pretrained Model aMLPとは、Liu, Daiらが提案する、Transformerモデルです。 ざっくりというと、BERTの代わりに使えて、より性能の良いモデルです。 詳しい解説は、こちらの記事などを参考にしてください。 この

tanreinama 13 Aug 11, 2022
Ukrainian TTS (text-to-speech) using Coqui TTS

title emoji colorFrom colorTo sdk app_file pinned Ukrainian TTS 🐸 green green gradio app.py false Ukrainian TTS 📢 🤖 Ukrainian TTS (text-to-speech)

Yurii Paniv 85 Dec 26, 2022
LSTM model - IMDB review sentiment analysis

NLP - Movie review sentiment analysis The colab notebook contains the code for building a LSTM Recurrent Neural Network that gives 87-88% accuracy on

Sundeep Bhimireddy 1 Jan 29, 2022
Concept Modeling: Topic Modeling on Images and Text

Concept is a technique that leverages CLIP and BERTopic-based techniques to perform Concept Modeling on images.

Maarten Grootendorst 120 Dec 27, 2022
숭실대학교 컴퓨터학부 전공종합설계프로젝트

✨ 시각장애인을 위한 버스도착 알림 장치 ✨ 👀 개요 현대 사회에서 대중교통 위치 정보를 이용하여 사람들이 간단하게 이용할 대중교통의 정보를 얻고 쉽게 대중교통을 이용할 수 있다. 해당 정보는 각종 어플리케이션과 대중교통 이용시설에서 위치 정보를 제공하고 있지만 시각

taegyun 3 Jan 25, 2022
Meta learning algorithms to train cross-lingual NLI (multi-task) models

Meta learning algorithms to train cross-lingual NLI (multi-task) models

M.Hassan Mojab 4 Nov 20, 2022
Utilities for preprocessing text for deep learning with Keras

Note: This utility is really old and is no longer maintained. You should use keras.layers.TextVectorization instead of this. Utilities for pre-process

Hamel Husain 180 Dec 09, 2022
ACL22 paper: Imputing Out-of-Vocabulary Embeddings with LOVE Makes Language Models Robust with Little Cost

Imputing Out-of-Vocabulary Embeddings with LOVE Makes Language Models Robust with Little Cost LOVE is accpeted by ACL22 main conference as a long pape

Lihu Chen 32 Jan 03, 2023
voice2json is a collection of command-line tools for offline speech/intent recognition on Linux

Command-line tools for speech and intent recognition on Linux

Michael Hansen 988 Jan 04, 2023
Python Implementation of ``Modeling the Influence of Verb Aspect on the Activation of Typical Event Locations with BERT'' (Findings of ACL: ACL 2021)

BERT-for-Surprisal Python Implementation of ``Modeling the Influence of Verb Aspect on the Activation of Typical Event Locations with BERT'' (Findings

7 Dec 05, 2022
Pytorch code for ICRA'21 paper: "Hierarchical Cross-Modal Agent for Robotics Vision-and-Language Navigation"

Hierarchical Cross-Modal Agent for Robotics Vision-and-Language Navigation This repository is the pytorch implementation of our paper: Hierarchical Cr

44 Jan 06, 2023
Trains an OpenNMT PyTorch model and SentencePiece tokenizer.

Trains an OpenNMT PyTorch model and SentencePiece tokenizer. Designed for use with Argos Translate and LibreTranslate.

Argos Open Tech 61 Dec 13, 2022
Phrase-BERT: Improved Phrase Embeddings from BERT with an Application to Corpus Exploration

Phrase-BERT: Improved Phrase Embeddings from BERT with an Application to Corpus Exploration This is the official repository for the EMNLP 2021 long pa

70 Dec 11, 2022
This codebase facilitates fast experimentation of differentially private training of Hugging Face transformers.

private-transformers This codebase facilitates fast experimentation of differentially private training of Hugging Face transformers. What is this? Why

Xuechen Li 73 Dec 28, 2022
A crowdsourced dataset of dialogues grounded in social contexts involving utilization of commonsense.

A crowdsourced dataset of dialogues grounded in social contexts involving utilization of commonsense.

Alexa 62 Dec 20, 2022