Async-first dependency injection library based on python type hints

Overview

Dependency Depression

Async-first dependency injection library based on python type hints

Quickstart

First let's create a class we would be injecting:

class Test:
    pass

Then we should create instance of container and register our Test class in it, we would use Callable provider that would simply call our class, since classes are also callables!

from dependency_depression import Depression, Callable

container = Depression()
container.register(Test, Callable(Test))

Then we should create a context and resolve our class from it:

with container.sync_context() as ctx:
    ctx.resolve(Test)
    # < __main__.Test>

Injecting

To mark parameters for injection mark them with typing.Annotated and Inject marker

from typing import Annotated
from dependency_depression import Callable, Depression, Inject


def create_number() -> int:
    return 42


def create_str(number: Annotated[int, Inject]) -> str:
    return str(number)

container = Depression()
container.register(str, Callable(create_str))
container.register(int, Callable(create_number))

with container.sync_context() as ctx:
    string = ctx.resolve(str)
    print(string, type(string))
    # 42 
   

Providers

When creating a provider you should specify the type it returns, but it can be inferred from class type or function return type:

from dependency_depression import Callable

provider = Callable(int)
# Is the same as Callable(factory=int, impl=int)
assert provider.provide_sync() == 0

Example using factory function, impl is inferred from return type hint:

from dependency_depression import Callable


def create_foo() -> str:
    return "foo"


provider = Callable(create_foo)
assert provider.provide_sync() == "foo"
assert provider.impl is str

This all comes into play when you have multiple implementations for base class and want to retrieve individual providers from a container,
let's register two concrete classes under same interface:

from dependency_depression import Depression, Callable


class Base:
    pass


class ConcreteA(Base):
    pass


class ConcreteB(Base):
    pass


container = Depression()
container.register(Base, Callable(ConcreteA))
container.register(Base, Callable(ConcreteB))

with container.sync_context() as ctx:
    a = ctx.resolve(Base, ConcreteA)  # <__main__.ConcreteA>
    b = ctx.resolve(Base, ConcreteB)  # <__main__.ConcreteB>
    
    # This would raise an error since we have two classes registered as `Base`
    ctx.resolve(Base)

If you have multiple classes registered under same interface you can specify concrete class using Impl marker:

from typing import Annotated
from dependency_depression import Inject, Impl


class Injectee:
    def __init__(
        self,
        a: Annotated[Base, Inject, Impl[ConcreteA]],
        b: Annotated[Base, Inject, Impl[ConcreteB]],
    ):
        pass

You can also just register concrete classes instead:

container.register(ConcreteA, Callable(ConcreteA))
container.register(ConcreteB, Callable(ConcreteB))

class Injectee:
    def __init__(
        self,
        a: Annotated[ConcreteA, Inject],
        b: Annotated[ConcreteB, Inject],
    ):
        pass

Generics

Dependency Depression can also be used with Generics:

T: raise NotImplementedError class UserRepository(IRepository[User]): def get(self, identity: int) -> User: return User(id=identity, username="Username") class ItemRepository(IRepository[Item]): def get(self, identity: int) -> Item: return Item(id=identity, title="Title") class Injectee: def __init__( self, user_repository: Annotated[IRepository[User], Inject], item_repository: Annotated[IRepository[Item], Inject], ): self.user_repository = user_repository self.item_repository = item_repository container = Depression() container.register(IRepository[User], Callable(UserRepository)) container.register(IRepository[Item], Callable(ItemRepository)) container.register(Injectee, Callable(Injectee)) with container.sync_context() as ctx: injectee = ctx.resolve(Injectee) injectee.user_repository # < __main__.UserRepository> injectee.item_repository # <__main__.ItemRepository>">
import dataclasses
from typing import Generic, TypeVar, Annotated

from dependency_depression import Inject, Depression, Callable

T = TypeVar("T")


@dataclasses.dataclass
class User:
    id: int
    username: str


@dataclasses.dataclass
class Item:
    id: int
    title: str


class IRepository(Generic[T]):
    def get(self, identity: int) -> T:
        raise NotImplementedError


class UserRepository(IRepository[User]):
    def get(self, identity: int) -> User:
        return User(id=identity, username="Username")

    
class ItemRepository(IRepository[Item]):
    def get(self, identity: int) -> Item:
        return Item(id=identity, title="Title")

    
class Injectee:
    def __init__(
        self,
        user_repository: Annotated[IRepository[User], Inject],
        item_repository: Annotated[IRepository[Item], Inject],
    ):
        self.user_repository = user_repository
        self.item_repository = item_repository


container = Depression()
container.register(IRepository[User], Callable(UserRepository))
container.register(IRepository[Item], Callable(ItemRepository))
container.register(Injectee, Callable(Injectee))

with container.sync_context() as ctx:
    injectee = ctx.resolve(Injectee)
    injectee.user_repository
    # < __main__.UserRepository>
    injectee.item_repository
    # <__main__.ItemRepository>

Context

Context as meant to be used within application or request scope, it keeps instances cache and an ExitStack to close all resources.

Cache

Context keeps cache of all instances, so they won't be created again, unless use_cache=False or NoCache is used.

In this example passing use_cache=False would cause context to create instance of Test again, however it wouldn't be cached:

from dependency_depression import Callable, Depression


class Test:
    pass


container = Depression()
container.register(Test, Callable(Test))

with container.sync_context() as ctx:
    first = ctx.resolve(Test)
    
    assert first is not ctx.resolve(Test, use_cache=False)
    # first is still cached in context
    assert first is ctx.resolve(Test)

Closing resources using context managers

Context would also use functions decorated with contextlib.contextmanager or contextlib.asyncontextmanager, but it won't use other instances of ContextManager.
Note that you're not passing impl parameter should specify return type using Iterable, Generator or their async counterparts - AsyncIterableand AsyncGenerator:

import contextlib
from typing import Iterable

from dependency_depression import Depression, Callable


@contextlib.contextmanager
def contextmanager() -> Iterable[int]:
    yield 42


class ContextManager:
    def __enter__(self):
        # This would never be called
        raise ValueError

    def __exit__(self, exc_type, exc_val, exc_tb):
        pass


container = Depression()

# Without return type hint you can specify impl parameter:
# container.register(int, Callable(contextmanager, int))
container.register(int, Callable(contextmanager))
container.register(ContextManager, Callable(ContextManager))

with container.sync_context() as ctx:
    number = ctx.resolve(int)  # 42
    ctx_manager = ctx.resolve(ContextManager) # __enter__ would not be called
    with ctx_manager:
        ...
        # Oops, ValueError raised

In case you need to manage lifecycle of your objects you should wrap them in a context manager:

import contextlib
from typing import AsyncGenerator

from dependency_depression import Callable, Depression
from sqlalchemy.ext.asyncio import AsyncSession


@contextlib.asynccontextmanager
async def get_session() -> AsyncGenerator[AsyncSession, None]:
    session = AsyncSession()
    async with session:
        try:
            yield session
        except Exception:
            await session.rollback()
            raise

container = Depression()
container.register(AsyncSession, Callable(AsyncSession))

@Inject decorator

@inject decorator allows you to automatically inject parameters into functions:

from typing import Annotated

from dependency_depression import Callable, Depression, Inject, inject


@inject
def injectee(number: Annotated[int, Inject]):
    return number


container = Depression()
container.register(int, Callable(int))

with container.sync_context():
    print(injectee())
    # 0

Without active context number parameter would not be injected:

injectee()
# TypeError: injectee() missing 1 required positional argument: 'number'

But you still can use your function just fine

print(injectee(42))

You can pass parameters even if you have an active context:

with container.sync_context():
    print(injectee())  # 0, injected
    print(injectee(42))  # 42, provided by user

Usage with Asyncio

Dependency Depression can be used in async context, just use context instead of sync_context:

import asyncio

from dependency_depression import Callable, Depression


async def get_number() -> int:
    await asyncio.sleep(1)
    return 42


async def main():
    container = Depression()
    container.register(int, Callable(get_number))
    async with container.context() as ctx:
        number = await ctx.resolve(int)
        assert number == 42


if __name__ == '__main__':
    asyncio.run(main())

Async context also supports both sync and async context managers and factory functions.

Owner
Doctor
Doctor
DOP-Tuning(Domain-Oriented Prefix-tuning model)

DOP-Tuning DOP-Tuning(Domain-Oriented Prefix-tuning model)代码基于Prefix-Tuning改进. Files ├── seq2seq # Code for encoder-decoder arch

Andrew Zeng 5 Nov 02, 2022
A simple calculator made with tkinter.

Simple Calculator A simple calculator made with tkinter. Requirements None, only you need to have windows 😉 ...Enjoy! Installation Clone this reposit

Abhyush 2 Jan 11, 2022
Python programs, usually short, of considerable difficulty, to perfect particular skills.

Peter Norvig MIT License 2015-2020 pytudes "An étude (a French word meaning study) is an instrumental musical composition, usually short, of considera

Peter Norvig 19.9k Dec 27, 2022
AKSWINPOSTINIT -- AKS Windows node post provisioning initialization

AKSWINPOSTINIT -- AKS Windows node post provisioning initialization Features This is a tool that provides one-time powershell script initilization for

Ping He 3 Nov 25, 2021
Push Prometheus metrics to VictoriaMetrics or other exporters

Push metrics from your periodic long-running jobs to existing Prometheus/VictoriaMetrics monitoring system.

olegm 14 Nov 04, 2022
Scraper pour les offres de stage Tesla et les notes sur Oasis (Polytech Paris-Saclay) sous forme de bot Discord

Scraper pour les offres de stage Tesla et les notes sur Oasis (Polytech Paris-Saclay) sous forme de bot Discord

Alexandre Malfreyt 1 Jan 21, 2022
Architectural Patterns implementation by using notification handler module prototype

This repository covers singleton, indirection, factory, adaptor, mediator patterns in python language by using university hypothetical notification module prototype. The code is just for demonstratin

Muhammad Umair 2 Jan 08, 2022
Proyecto - Análisis de texto de eventos históricos

Acceder al código desde Google Colab para poder ver de manera adecuada todas las visualizaciones y poder interactuar con ellas. Link de acceso: https:

1 Jan 31, 2022
Python bindings for Basler's VisualApplets TCL script generation

About visualapplets.py The Basler AG company provides a TCL scripting engine to automatize the creation of VisualApplets designs (a former Silicon Sof

Jürgen Hock 2 Dec 07, 2022
A project for the Qvault Hackathon, 2022-01-17

musical-octo-engine Steps to run brew install python-tk brew install portaudio

Erik Kristofer Anderson 2 May 17, 2022
The FLARE team's open-source library to disassemble Common Intermediate Language (CIL) instructions.

dncil is a Common Intermediate Language (CIL) disassembly library written in Python that supports parsing the header, instructions, and exception hand

MANDIANT 95 Jan 08, 2023
A command-line utility that creates projects from cookiecutters (project templates), e.g. Python package projects, VueJS projects.

Cookiecutter A command-line utility that creates projects from cookiecutters (project templates), e.g. creating a Python package project from a Python

18.6k Jan 02, 2023
Daily knowledge pills to get better in Python.

Python daily pills Daily knowledge pills to get better Python code. Why Does your Python code suffers of any of this symptoms? Incorrect Indentation I

Jeferson Vaz dos Santos 35 Sep 19, 2022
A Dungeon and Dragons Toolkit using Python

Pythons-Dungeons A Dungeon and Dragons Toolkit using Python Rules: -When you are commiting please don't delete parts of the code that are important -A

2 Oct 21, 2021
Hotpile: High Order Turing Machine Language Compiler

Hotpile: High Order Turing Machine Language Compiler Build and Run Requirements: Python 3.6+, bison, flex, and GCC installed. Needs to be run under UN

Jiang Weihao 4 Dec 29, 2021
Set named timers for cooking, watering plants, brewing tea and more.

Timer Set named timers for cooking, watering plants, brewing tea and more. About Use Mycroft when your hands are messy or you need more that the one t

OpenVoiceOS 3 Nov 02, 2022
A complete python calculator with 2 modes Float and Int numbers.

Python Calculator This program is made for learning purpose. Getting started This Program runs using python, install it via terminal or from thier ofi

Felix Sanchez 1 Jan 18, 2022
qecsim is a Python 3 package for simulating quantum error correction using stabilizer codes.

qecsim qecsim is a Python 3 package for simulating quantum error correction using stabilizer codes.

44 Dec 20, 2022
Google Foobar challenge solutions from my experience and other's on the web.

Google Foobar challenge Google Foobar challenge solutions from my experience and other's on the web. Note: Problems indicated with "Mine" are tested a

Islam Ayman 6 Jan 20, 2022
Parser for air tickets' price

Air-ticket-price-parser Parser for air tickets' price How to Install Firefox If geckodriver.exe is not compatible with your Firefox version, download

Situ Xuannn 1 Dec 13, 2021