Final Project for the Intel AI Readiness Boot Camp NLP (Jan)

Overview

NLP Boot Camp (Jan) Synopsis

Full Name:

Prameya Mohanty

Name of your School:

Delhi Public School, Rourkela

Class:

VIII

Title of the Project:

iTransect – A Language Detector cum Translator

Project Domain:

Natural Language Processing

Summary:

This application is an AI and NLP enabled language detector cum translator. It can first detect the language used in the text entered by the user. Then it can also convert the text in your desired language. This app has a capability to recognize and translate text to over 15 languages.

Context:

We frequently face problems while reading google articles or while going through websites which are not in English language or our mother tongue. Many rural people also don't understand any language except their Mother Tongue. So, they can also translate the text and go through it.

My idea for this problem is that we can create a translator to translate the text into a language which we can understand. But another problem which occurs is that we need to first recognize that the original text is written in which language and mostly we fail to do so. For this reason, my application would just take the text as input, recognize the language of the text and then it would also translate the text into our desired language.

I transformed my idea into a solution by performing some Natural Language Processing on the text given by the user to first recognize the language used in the text and then translate into the desired language of the user.

How does it work:

I have used the MultinomialNB Model of the Scikit-Learn Library. The multinomial Naive Bayes classifier is suitable for classification with discrete features (e.g., word counts for text classification). The multinomial distribution normally requires integer feature counts. However, in practice, fractional counts such as tf-idf may also work.

My application contains a Huge Dataset which contains over 15 languages and some texts on those languages. This dataset in trained on the MultinomialNB Model of the Scikit-Learn Library. This helps it to predict the language of the desired text which we provide to it. Then I have used the GoogleTrans API to Translate our Text into the desired language of the user.

My application takes some text as input from the user. Then it detects the language used in the text by a MultinomialNB Model of the Scikit-Learn Library. After that it uses the GoogleTrans API to translate the text into the desired language of the user.

The future scope of my model is that we can increase the dataset by adding more languages so that the predictions would be more accurate. This would also help our application to cover a broader audience.

Instructions for Usage:

  1. Prerequisite: To use this application, you should have Python installed in your system. Installation of Git is recommended but not compulsory.

  2. Clone Repo: If you have git installed in your system then you can use the command given here or else you can just click on the Code button and then click on the Download ZIP Button. git clone https://github.com/The-Coding-Hub/iTransect.git

  3. Install Requirements: Now you need to install the requirements of this application using pip and the requirements.txt file. Command to be executed in the console is given below. pip install -r ./requirements.txt

  4. Start App: Now you are all set the use this application. You just need to execute the command given below to start the development server of Python Flask in your Localhost.

  5. Enjoy App: Just open the link given in your console and then you can enjoy our application!

Video Link:

https://youtu.be/QsJQ1lxI2Lw

Code Folder Link:

https://github.com/The-Coding-Hub/iTransect

Owner
TheCodingHub
Student at Delhi Public School, Rourkela, Odisha. Programming is my favorite sport. YouTube Channel: TheCodingHub
TheCodingHub
PG-19 Language Modelling Benchmark

PG-19 Language Modelling Benchmark This repository contains the PG-19 language modeling benchmark. It includes a set of books extracted from the Proje

DeepMind 161 Oct 30, 2022
A library for finding knowledge neurons in pretrained transformer models.

knowledge-neurons An open source repository replicating the 2021 paper Knowledge Neurons in Pretrained Transformers by Dai et al., and extending the t

EleutherAI 96 Dec 21, 2022
List of GSoC organisations with number of times they have been selected.

Welcome to GSoC Organisation Frequency And Details 👋 List of GSoC organisations with number of times they have been selected, techonologies, topics,

Shivam Kumar Jha 41 Oct 01, 2022
Official codebase for Can Wikipedia Help Offline Reinforcement Learning?

Official codebase for Can Wikipedia Help Offline Reinforcement Learning?

Machel Reid 82 Dec 19, 2022
Implementaion of our ACL 2022 paper Bridging the Data Gap between Training and Inference for Unsupervised Neural Machine Translation

Bridging the Data Gap between Training and Inference for Unsupervised Neural Machine Translation This is the implementaion of our paper: Bridging the

hezw.tkcw 20 Dec 12, 2022
Beyond Masking: Demystifying Token-Based Pre-Training for Vision Transformers

beyond masking Beyond Masking: Demystifying Token-Based Pre-Training for Vision Transformers The code is coming Figure 1: Pipeline of token-based pre-

Yunjie Tian 23 Sep 27, 2022
Pytorch NLP library based on FastAI

Quick NLP Quick NLP is a deep learning nlp library inspired by the fast.ai library It follows the same api as fastai and extends it allowing for quick

Agis pof 283 Nov 21, 2022
ByT5: Towards a token-free future with pre-trained byte-to-byte models

ByT5: Towards a token-free future with pre-trained byte-to-byte models ByT5 is a tokenizer-free extension of the mT5 model. Instead of using a subword

Google Research 409 Jan 06, 2023
Simple Text-To-Speech Bot For Discord

Simple Text-To-Speech Bot For Discord This is a very simple TTS bot for discord made with python. For this bot you need FFMPEG, see installation to se

1 Sep 26, 2022
Opal-lang - A WIP programming language based on Python

thanks to aphitorite for the beautiful logo! opal opal is a WIP transcompiled pr

3 Nov 04, 2022
2021搜狐校园文本匹配算法大赛baseline

sohu2021-baseline 2021搜狐校园文本匹配算法大赛baseline 简介 分享了一个搜狐文本匹配的baseline,主要是通过条件LayerNorm来增加模型的多样性,以实现同一模型处理不同类型的数据、形成不同输出的目的。 线下验证集F1约0.74,线上测试集F1约0.73。

苏剑林(Jianlin Su) 45 Sep 06, 2022
Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition

SEW (Squeezed and Efficient Wav2vec) The repo contains the code of the paper "Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speec

ASAPP Research 67 Dec 01, 2022
GPT-2 Model for Leetcode Questions in python

Leetcode using AI 🤖 GPT-2 Model for Leetcode Questions in python New demo here: https://huggingface.co/spaces/gagan3012/project-code-py Note: the Ans

Gagan Bhatia 100 Dec 12, 2022
Implementation for paper BLEU: a Method for Automatic Evaluation of Machine Translation

BLEU Score Implementation for paper: BLEU: a Method for Automatic Evaluation of Machine Translation Author: Ba Ngoc from ProtonX BLEU score is a popul

Ngoc Nguyen Ba 6 Oct 07, 2021
Contains the code and data for our #ICSE2022 paper titled as "CodeFill: Multi-token Code Completion by Jointly Learning from Structure and Naming Sequences"

CodeFill This repository contains the code for our paper titled as "CodeFill: Multi-token Code Completion by Jointly Learning from Structure and Namin

Software Analytics Lab 11 Oct 31, 2022
Creating an LSTM model to generate music

Music-Generation Creating an LSTM model to generate music music-generator Used to create basic sin wave sounds music-ai Contains the functions to conv

Jerin Joseph 2 Dec 02, 2021
Build Text Rerankers with Deep Language Models

Reranker is a lightweight, effective and efficient package for training and deploying deep languge model reranker in information retrieval (IR), question answering (QA) and many other natural languag

Luyu Gao 140 Dec 06, 2022
Client library to download and publish models and other files on the huggingface.co hub

huggingface_hub Client library to download and publish models and other files on the huggingface.co hub Do you have an open source ML library? We're l

Hugging Face 644 Jan 01, 2023
Implementation of "Adversarial purification with Score-based generative models", ICML 2021

Adversarial Purification with Score-based Generative Models by Jongmin Yoon, Sung Ju Hwang, Juho Lee This repository includes the official PyTorch imp

15 Dec 15, 2022