Steganography is the art of hiding the fact that communication is taking place, by hiding information in other information.

Overview

Project Name : Steganography-Tools

Made By - Priyansh Sharma

  • Steganography is the art of hiding the fact that communication is taking place, by hiding information in other information.
  • This project hides the message with in the image, text file, audio file and video file. In this project, the sender selects a cover file (image, text, audio or video) with secret text and hide it into the cover file by using different efficient algorithm and generate a stego file of same format as our cover file (image, text, audio or video). Then the stego file is sent to the destination with the help of private or public communication networks. On the other side i.e. receiver, the receiver downloads the stego file and by using the appropriate decoding algorithm retrieves the secret text that is hidden in the stego file.

1

Image Steganography ( Hiding TEXT in IMAGE ) :

  • Using Least Significant Bit Insertion we overwrite the LSB bit of actual image with the bit of text message character. At the end of text message we push a delimiter to the message string as a checkpoint useful in decoding function. We encode data in order of Red, then Green and then Blue pixel for the entire message.

Text Steganography ( Hiding TEXT in TEXT ) :

  • In Unicode, there are specific zero-width characters (ZWC). We used four ZWCs for hiding the Secret Message through the Cover Text.

image

  • We get its ascii value and it is incremented or decremented based on if ascii value between 32 and 64 , it is incremented by 48(ascii value for 0) else it is decremented by 48
  • Then xor the the obtained value with 170(binary equivalent-10101010)
  • Convert the obtained number from first two step to its binary equivalent then add "0011" if it earlier belonged to ascii value between 32 and 64 else add "0110" making it 12 bit for each character.
  • With the final binary equivalent we also 111111111111 as delimiter to find the end of message
  • Now from 12 bit representing each character every 2 bit is replaced with equivalent ZWCs according to the table. Each character is hidden after a word in the cover text.

Audio Steganography ( Hiding TEXT in AUDIO ) :

  • For encoding we have modified the LSB Algorithm, for that we take each frame byte of the converting it to 8 bit format then check for the 4th LSB and see if it matches with the secret message bit. If yes change the 2nd LSB to 0 using logical AND operator between each frame byte and 253(11111101). Else we change the 2nd LSB to 1 using logical AND operation with 253 and then logical OR to change it to 1 and now add secret message bit in LSB for achieving that use logical AND operation between each frame byte of carrier audio and a binary number of 254 (11111110). Then logical OR operation between modified carrier byte and the next bit (0 or 1) from the secret message which resets the LSB of carrier byte.

Video Steganography ( Hiding TEXT in Video ) :

  • In video steganography we have used combination of cryptography and Steganography. We encode the message through two parts
  • We convert plaintext to cipher text for doing so we have used RC4 Encryption Algorithm. RC4 is a stream cipher and variable-length key algorithm. This algorithm encrypts one byte at a time. It has two major parts for encryption and decryption:-
  • KSA(Key-Scheduling Algorithm)- A list S of length 256 is made and the entries of S are set equal to the values from 0 to 255 in ascending order. We ask user for a key and convert it to its equivalent ascii code. S[] is a permutation of 0,1,2....255, now a variable j is assigned as j=(j+S[i]+key[i%key_length) mod 256 and swap S(i) with S(j) and accordingly we get new permutation for the whole keystream according to the key.
  • PRGA(Pseudo random generation Algorithm (Stream Generation)) - Now we take input length of plaintext and initiate loop to generate a keystream byte of equal length. For this we initiate i=0, j=0 now increment i by 1 and mod with 256. Now we add S[i] to j amd mod of it with 256 ,again swap the values. At last step take store keystreambytes which matches as S[(S[i]+S[j]) mod 256] to finally get key stream of length same as plaintext.
  • Now we xor the plaintext with keystream to get the final cipher.

With Further Development In this Project " Steganography Tools", This Project Can be used by Indian army, RAW, Police and Intelligence agency for Special Emergency operation.

Data science, Data manipulation and Machine learning package.

duality Data science, Data manipulation and Machine learning package. Use permitted according to the terms of use and conditions set by the attached l

David Kundih 3 Oct 19, 2022
Python based GBDT implementation

Py-boost: a research tool for exploring GBDTs Modern gradient boosting toolkits are very complex and are written in low-level programming languages. A

Sberbank AI Lab 20 Sep 21, 2022
Open source time series library for Python

PyFlux PyFlux is an open source time series library for Python. The library has a good array of modern time series models, as well as a flexible array

Ross Taylor 2k Jan 02, 2023
Penguins species predictor app is used to classify penguins species created using python's scikit-learn, fastapi, numpy and joblib packages.

Penguins Classification App Penguins species predictor app is used to classify penguins species using their island, sex, bill length (mm), bill depth

Siva Prakash 3 Apr 05, 2022
A python library for easy manipulation and forecasting of time series.

Time Series Made Easy in Python darts is a python library for easy manipulation and forecasting of time series. It contains a variety of models, from

Unit8 5.2k Jan 04, 2023
A statistical library designed to fill the void in Python's time series analysis capabilities, including the equivalent of R's auto.arima function.

pmdarima Pmdarima (originally pyramid-arima, for the anagram of 'py' + 'arima') is a statistical library designed to fill the void in Python's time se

alkaline-ml 1.3k Jan 06, 2023
Retrieve annotated intron sequences and classify them as minor (U12-type) or major (U2-type)

(intron I nterrogator and C lassifier) intronIC is a program that can be used to classify intron sequences as minor (U12-type) or major (U2-type), usi

Graham Larue 4 Jul 26, 2022
Sleep stages are classified with the help of ML. We have used 4 different ML algorithms (SVM, KNN, RF, NN) to demonstrate them

Sleep stages are classified with the help of ML. We have used 4 different ML algorithms (SVM, KNN, RF, NN) to demonstrate them.

Anirudh Edpuganti 3 Apr 03, 2022
A demo project to elaborate how Machine Learn Models are deployed on production using Flask API

This is a salary prediction website developed with the help of machine learning, this makes prediction of salary on basis of few parameters like interview score, experience test score.

1 Feb 10, 2022
PySpark + Scikit-learn = Sparkit-learn

Sparkit-learn PySpark + Scikit-learn = Sparkit-learn GitHub: https://github.com/lensacom/sparkit-learn About Sparkit-learn aims to provide scikit-lear

Lensa 1.1k Jan 04, 2023
ThunderGBM: Fast GBDTs and Random Forests on GPUs

Documentations | Installation | Parameters | Python (scikit-learn) interface What's new? ThunderGBM won 2019 Best Paper Award from IEEE Transactions o

Xtra Computing Group 648 Dec 16, 2022
Distributed Computing for AI Made Simple

Project Home Blog Documents Paper Media Coverage Join Fiber users email list Uber Open Source 997 Dec 30, 2022

Generate music from midi files using BPE and markov model

Generate music from midi files using BPE and markov model

Aditya Khadilkar 37 Oct 24, 2022
Both social media sentiment and stock market data are crucial for stock price prediction

Relating-Social-Media-to-Stock-Movement-Public - We explore the application of Machine Learning for predicting the return of the stock by using the information of stock returns. A trading strategy ba

Vishal Singh Parmar 15 Oct 29, 2022
Fast Fourier Transform-accelerated Interpolation-based t-SNE (FIt-SNE)

FFT-accelerated Interpolation-based t-SNE (FIt-SNE) Introduction t-Stochastic Neighborhood Embedding (t-SNE) is a highly successful method for dimensi

Kluger Lab 547 Dec 21, 2022
A unified framework for machine learning with time series

Welcome to sktime A unified framework for machine learning with time series We provide specialized time series algorithms and scikit-learn compatible

The Alan Turing Institute 6k Jan 06, 2023
The Emergence of Individuality

The Emergence of Individuality

16 Jul 20, 2022
My capstone project for Udacity's Machine Learning Nanodegree

MLND-Capstone My capstone project for Udacity's Machine Learning Nanodegree Lane Detection with Deep Learning In this project, I use a deep learning-b

Michael Virgo 407 Dec 12, 2022
An easier way to build neural search on the cloud

Jina is geared towards building search systems for any kind of data, including text, images, audio, video and many more. With the modular design & multi-layer abstraction, you can leverage the effici

Jina AI 17k Jan 01, 2023
Crunchdao - Python API for the Crunchdao machine learning tournament

Python API for the Crunchdao machine learning tournament Interact with the Crunc

3 Jan 19, 2022