Enabling Lightweight Fine-tuning for Pre-trained Language Model Compression based on Matrix Product Operators

Related tags

Deep LearningMPOP
Overview

Enabling Lightweight Fine-tuning for Pre-trained Language Model Compression based on Matrix Product Operators

This is our Pytorch implementation for the paper:

Peiyu Liu, Ze-Feng Gao, Wayne Xin Zhao, Zhi-Yuan Xie, Zhong-Yi Lu and Ji-Rong Wen(2021). Enabling Lightweight Fine-tuning for Pre-trained Language Model Compression based on Matrix Product Operators

Introduction

This paper presents a novel pre-trained language models (PLM) compression approach based on the matrix product operator (short as MPO) from quantum many-body physics. It can decompose an original matrix into central tensors (containing the core information) and auxiliary tensors (with only a small proportion of parameters). With the decomposed MPO structure, we propose a novel fine-tuning strategy by only updating the parameters from the auxiliary tensors, and design an optimization algorithm for MPO-based approximation over stacked network architectures. Our approach can be applied to the original or the compressed PLMs in a general way, which derives a lighter network and significantly reduces the parameters to be fine-tuned. Extensive experiments have demonstrated the effectiveness of the proposed approach in model compression, especially the reduction in fine-tuning parameters (91% reduction on average).

image

For more details about the technique of MPOP, refer to our paper

Release Notes

  • First version: 2021/05/21
  • add albert code: 2021/06/08

Requirements

  • python 3.7
  • torch >= 1.8.0

Installation

pip install mpo_lab

Lightweight fine-tuning

In lightweight fine-tuning, we use original ALBERT without fine-tuning as to be compressed. By performing MPO decomposition on each weight matrix, we obtain four auxiliary tensors and one central tensor per tensor set. This provides a good initialization for the task-specific distillation. Refer to run_all_albert_fine_tune.sh

Important arguments:

--data_dir          Path to load dataset
--mpo_lr            Learning rate of tensors produced by MPO
--mpo_layers        Name of components to be decomposed with MPO
--emb_trunc         Truncation number of the central tensor in word embedding layer
--linear_trunc      Truncation number of the central tensor in linear layer
--attention_trunc   Truncation number of the central tensor in attention layer
--load_layer        Name of components to be loaded from exist checkpoint file
--update_mpo_layer  Name of components to be update when training the model

Dimension squeezing

In Dimension squeezing, we compute approiate truncation order for the whole model. In order to re-produce the results in paper, we prepare the model after lightweight fine-tuning. Refer to run_all_albert_fine_tune.sh

albert models google drive

Acknowledgment

Any scientific publications that use our codes should cite the following paper as the reference:

@inproceedings{Liu-ACL-2021,
  author    = {Peiyu Liu and
               Ze{-}Feng Gao and
               Wayne Xin Zhao and
               Z. Y. Xie and
               Zhong{-}Yi Lu and
               Ji{-}Rong Wen},
  title     = "Enabling Lightweight Fine-tuning for Pre-trained Language Model Compression
               based on Matrix Product Operators",
  booktitle = {{ACL}},
  year      = {2021},
}

TODO

  • prepare data and code
  • upload models in order to reproduce experiments
  • supplementary details for paper
Owner
RUCAIBox
An enthusiastic group that aims to create beautiful things with AI
RUCAIBox
UNION: An Unreferenced Metric for Evaluating Open-ended Story Generation

UNION Automatic Evaluation Metric described in the paper UNION: An UNreferenced MetrIc for Evaluating Open-eNded Story Generation (EMNLP 2020). Please

50 Dec 30, 2022
Measures input lag without dedicated hardware, performing motion detection on recorded or live video

What is InputLagTimer? This tool can measure input lag by analyzing a video where both the game controller and the game screen can be seen on a webcam

Bruno Gonzalez 4 Aug 18, 2022
Official Pytorch implementation of 'RoI Tanh-polar Transformer Network for Face Parsing in the Wild.'

Official Pytorch implementation of 'RoI Tanh-polar Transformer Network for Face Parsing in the Wild.'

Jie Shen 125 Jan 08, 2023
Deep learning with TensorFlow and earth observation data.

Deep Learning with TensorFlow and EO Data Complete file set for Jupyter Book Autor: Development Seed Date: 04 October 2021 ISBN: (to come) Notebook tu

Development Seed 20 Nov 16, 2022
SimBERT升级版(SimBERTv2)!

RoFormer-Sim RoFormer-Sim,又称SimBERTv2,是我们之前发布的SimBERT模型的升级版。 介绍 https://kexue.fm/archives/8454 训练 tensorflow 1.14 + keras 2.3.1 + bert4keras 0.10.6 下载

318 Dec 31, 2022
Neural HMMs are all you need (for high-quality attention-free TTS)

Neural HMMs are all you need (for high-quality attention-free TTS) Shivam Mehta, Éva Székely, Jonas Beskow, and Gustav Eje Henter This is the official

Shivam Mehta 0 Oct 28, 2022
Panoptic SegFormer: Delving Deeper into Panoptic Segmentation with Transformers

Panoptic SegFormer: Delving Deeper into Panoptic Segmentation with Transformers Results results on COCO val Backbone Method Lr Schd PQ Config Download

155 Dec 20, 2022
Data-depth-inference - Data depth inference with python

Welcome! This readme will guide you through the use of the code in this reposito

Marco 3 Feb 08, 2022
Material del curso IIC2233 Programación Avanzada 📚

Contenidos Los contenidos se organizan según la semana del semestre en que nos encontremos, y según la semana que se destina para su estudio. Los cont

IIC2233 @ UC 72 Dec 23, 2022
PyTorch implementation of PSPNet segmentation network

pspnet-pytorch PyTorch implementation of PSPNet segmentation network Original paper Pyramid Scene Parsing Network Details This is a slightly different

Roman Trusov 532 Dec 29, 2022
JstDoS - HTTP Protocol Stack Remote Code Execution Vulnerability

jstDoS If you are going to skid that, please give credits ! ^^ ¿How works? This

apolo 4 Feb 11, 2022
System Design course at HSE (2021)

System Design course at HSE (2021) Wiki-страница курса Структура репозитория: slides - директория с презентациями с занятий tasks - материалы для выпо

22 Dec 25, 2022
YOLTv5 rapidly detects objects in arbitrarily large aerial or satellite images that far exceed the ~600×600 pixel size typically ingested by deep learning object detection frameworks

YOLTv5 rapidly detects objects in arbitrarily large aerial or satellite images that far exceed the ~600×600 pixel size typically ingested by deep learning object detection frameworks.

Adam Van Etten 145 Jan 01, 2023
Improving Generalization Bounds for VC Classes Using the Hypergeometric Tail Inversion

Improving Generalization Bounds for VC Classes Using the Hypergeometric Tail Inversion Preface This directory provides an implementation of the algori

Jean-Samuel Leboeuf 0 Nov 03, 2021
The code succinctly shows how our ensemble learning based on deep learning CNN is used for LAM-avulsion-diagnosis.

deep-learning-LAM-avulsion-diagnosis The code succinctly shows how our ensemble learning based on deep learning CNN is used for LAM-avulsion-diagnosis

1 Jan 12, 2022
Text and code for the forthcoming second edition of Think Bayes, by Allen Downey.

Think Bayes 2 by Allen B. Downey The HTML version of this book is here. Think Bayes is an introduction to Bayesian statistics using computational meth

Allen Downey 1.5k Jan 08, 2023
TensorLight - A high-level framework for TensorFlow

TensorLight is a high-level framework for TensorFlow-based machine intelligence applications. It reduces boilerplate code and enables advanced feature

Benjamin Kan 10 Jul 31, 2022
A distributed, plug-n-play algorithm for multi-robot applications with a priori non-computable objective functions

A distributed, plug-n-play algorithm for multi-robot applications with a priori non-computable objective functions Kapoutsis, A.C., Chatzichristofis,

Athanasios Ch. Kapoutsis 5 Oct 15, 2022
Multi-layer convolutional LSTM with Pytorch

Convolution_LSTM_pytorch Thanks for your attention. I haven't got time to maintain this repo for a long time. I recommend this repo which provides an

Zijie Zhuang 734 Jan 03, 2023
An Object Oriented Programming (OOP) interface for Ontology Web language (OWL) ontologies.

Enabling a developer to use Ontology Web Language (OWL) along with its reasoning capabilities in an Object Oriented Programming (OOP) paradigm, by pro

TheEngineRoom-UniGe 7 Sep 23, 2022