The repository forked from NVlabs uses our data. (Differentiable rasterization applied to 3D model simplification tasks)

Overview

nvdiffmodeling [origin_code]

Teaser image

Differentiable rasterization applied to 3D model simplification tasks, as described in the paper:

Appearance-Driven Automatic 3D Model Simplification
Jon Hasselgren, Jacob Munkberg, Jaakko Lehtinen, Miika Aittala and Samuli Laine
https://research.nvidia.com/publication/2021-04_Appearance-Driven-Automatic-3D
https://arxiv.org/abs/2104.03989

License

Copyright © 2021, NVIDIA Corporation. All rights reserved.

This work is made available under the Nvidia Source Code License.

For business inquiries, please visit our website and submit the form: NVIDIA Research Licensing

Citation

@inproceedings{Hasselgren2021,
  title     = {Appearance-Driven Automatic 3D Model Simplification},
  author    = {Jon Hasselgren and Jacob Munkberg and Jaakko Lehtinen and Miika Aittala and Samuli Laine},
  booktitle = {Eurographics Symposium on Rendering},
  year      = {2021}
}

Installation

Requirements:

Tested in Anaconda3 with Python 3.6 and PyTorch 1.8.

One time setup (Windows)

  1. Install Microsoft Visual Studio 2019+ with Microsoft Visual C++.
  2. Install Cuda 10.2 or above. Note: Install CUDA toolkit from https://developer.nvidia.com/cuda-toolkit (not through anaconda)
  3. Install the appropriate version of PyTorch compatible with the installed Cuda toolkit. Below is an example with Cuda 11.1
conda create -n dmodel python=3.6
activate dmodel
conda install pytorch torchvision torchaudio cudatoolkit=11.1 -c pytorch -c conda-forge
conda install imageio
pip install PyOpenGL glfw
  1. Install nvdiffrast in the dmodel conda env. Follow the installation instructions.

Every new command prompt

activate dmodel

Examples

Sphere to cow example:

python train.py --config configs/spot.json

The results will be stored in the out folder. The Spot model was created and released into the public domain by Keenan Crane.

Additional assets can be downloaded here [205MB]. Unzip and place the subfolders in the project data folder, e.g., data\skull. All assets are copyright of their respective authors, see included license files for further details.

Included examples

  • building.json - Our data
  • skull.json - Joint normal map and shape optimization on a skull
  • ewer.json - Ewer model from a reduced mesh as initial guess
  • gardenina.json - Aggregate geometry example
  • hibiscus.json - Aggregate geometry example
  • figure_brushed_gold_64.json - LOD example, trained against a supersampled reference
  • figure_displacement.json - Joint shape, normal map, and displacement map example

The json files that end in _paper.json are configs with the settings used for the results in the paper. They take longer and require a GPU with sufficient memory.

Server usage (through Docker)

  • Build docker image (run the command from the code root folder). docker build -f docker/Dockerfile -t diffmod:v1 . Requires a driver that supports Cuda 10.1 or newer.

  • Start an interactive docker container: docker run --gpus device=0 -it --rm -v /raid:/raid -it diffmod:v1 bash

  • Detached docker: docker run --gpus device=1 -d -v /raid:/raid -w=[path to the code] diffmod:v1 python train.py --config configs/spot.json

Owner
Qiujie (Jay) Dong
Computer Vision & Computer Graphics & Machine Learning & 3D mesh segmentation
Qiujie (Jay) Dong
Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CVPR 2021)

Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CAC) Xin Lai*, Zhuotao Tian*, Li Jiang, Shu Liu, Hengshuang Zhao, Li

DV Lab 137 Dec 14, 2022
Relative Uncertainty Learning for Facial Expression Recognition

Relative Uncertainty Learning for Facial Expression Recognition The official implementation of the following paper at NeurIPS2021: Title: Relative Unc

35 Dec 28, 2022
TransferNet: Learning Transferrable Knowledge for Semantic Segmentation with Deep Convolutional Neural Network

TransferNet: Learning Transferrable Knowledge for Semantic Segmentation with Deep Convolutional Neural Network Created by Seunghoon Hong, Junhyuk Oh,

42 Jun 29, 2022
Official codebase for "B-Pref: Benchmarking Preference-BasedReinforcement Learning" contains scripts to reproduce experiments.

B-Pref Official codebase for B-Pref: Benchmarking Preference-BasedReinforcement Learning contains scripts to reproduce experiments. Install conda env

48 Dec 20, 2022
Repo for "TableParser: Automatic Table Parsing with Weak Supervision from Spreadsheets" at [email protected]

TableParser Repo for "TableParser: Automatic Table Parsing with Weak Supervision from Spreadsheets" at DS3 Lab 11 Dec 13, 2022

Differentiable Abundance Matching With Python

shamnet Differentiable Stellar Population Synthesis Installation You can install shamnet with pip. Installation dependencies are numpy, jax, corrfunc,

5 Dec 17, 2021
This is code of book "Learn Deep Learning with PyTorch"

深度学习入门之PyTorch Learn Deep Learning with PyTorch 非常感谢您能够购买此书,这个github repository包含有深度学习入门之PyTorch的实例代码。由于本人水平有限,在写此书的时候参考了一些网上的资料,在这里对他们表示敬意。由于深度学习的技术在

Xingyu Liao 2.5k Jan 04, 2023
Asymmetric metric learning for knowledge transfer

Asymmetric metric learning This is the official code that enables the reproduction of the results from our paper: Asymmetric metric learning for knowl

20 Dec 06, 2022
ppo_pytorch_cpp - an implementation of the proximal policy optimization algorithm for the C++ API of Pytorch

PPO Pytorch C++ This is an implementation of the proximal policy optimization algorithm for the C++ API of Pytorch. It uses a simple TestEnvironment t

Martin Huber 59 Dec 09, 2022
Head and Neck Tumour Segmentation and Prediction of Patient Survival Project

Head-and-Neck-Tumour-Segmentation-and-Prediction-of-Patient-Survival Welcome to the Head and Neck Tumour Segmentation and Prediction of Patient Surviv

5 Oct 20, 2022
TransMorph: Transformer for Medical Image Registration

TransMorph: Transformer for Medical Image Registration keywords: Vision Transformer, Swin Transformer, convolutional neural networks, image registrati

Junyu Chen 180 Jan 07, 2023
A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) based on Deep Filtering.

DeepFilterNet A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) based on Deep Filtering. libDF contains Rust code used for dat

Hendrik Schröter 292 Dec 25, 2022
A BaSiC Tool for Background and Shading Correction of Optical Microscopy Images

BaSiC Matlab code accompanying A BaSiC Tool for Background and Shading Correction of Optical Microscopy Images by Tingying Peng, Kurt Thorn, Timm Schr

Marr Lab 34 Dec 18, 2022
Compact Bilinear Pooling for PyTorch

Compact Bilinear Pooling for PyTorch. This repository has a pure Python implementation of Compact Bilinear Pooling and Count Sketch for PyTorch. This

Grégoire Payen de La Garanderie 234 Dec 07, 2022
This repository contains the files for running the Patchify GUI.

Repository Name Train-Test-Validation-Dataset-Generation App Name Patchify Description This app is designed for crop images and creating smal

Salar Ghaffarian 9 Feb 15, 2022
Face Mask Detector by live camera using tensorflow-keras, openCV and Python

Face Mask Detector 😷 by Live Camera Detecting masked or unmasked faces by live camera with percentange of mask occupation About Project: This an Arti

Karan Shingde 2 Apr 04, 2022
🏖 Keras Implementation of Painting outside the box

Keras implementation of Image OutPainting This is an implementation of Painting Outside the Box: Image Outpainting paper from Standford University. So

Bendang 1.1k Dec 10, 2022
Project ArXiv Citation Network

Project ArXiv Citation Network Overview This project involved the analysis of the ArXiv citation network. Usage The complete code of this project is i

Dennis Núñez-Fernández 5 Oct 20, 2022
TinyML Cookbook, published by Packt

TinyML Cookbook This is the code repository for TinyML Cookbook, published by Packt. Author: Gian Marco Iodice Publisher: Packt About the book This bo

Packt 93 Dec 29, 2022
MoCoPnet - Deformable 3D Convolution for Video Super-Resolution

Deformable 3D Convolution for Video Super-Resolution Pytorch implementation of l

Xinyi Ying 28 Dec 15, 2022