A2T: Towards Improving Adversarial Training of NLP Models (EMNLP 2021 Findings)

Overview

A2T: Towards Improving Adversarial Training of NLP Models

This is the source code for the EMNLP 2021 (Findings) paper "Towards Improving Adversarial Training of NLP Models".

If you use the code, please cite the paper:

@misc{yoo2021improving,
      title={Towards Improving Adversarial Training of NLP Models}, 
      author={Jin Yong Yoo and Yanjun Qi},
      year={2021},
      eprint={2109.00544},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

Prerequisites

The work heavily relies on the TextAttack package. In fact, the main training code is implemented in the TextAttack package.

Required packages are listed in the requirements.txt file.

pip install -r requirements.txt

Data

All of the data used for the paper are available from HuggingFace's Datasets.

For IMDB and Yelp datasets, because there are no official validation splits, we randomly sampled 5k and 10k, respectively, from the training set and used them as valid splits. We provide the splits in this Google Drive folder. To use them with the provided code, place each folder (e.g. imdb, yelp, augmented_data) inside ./data (run mkdir data).

Also, augmented training data generated using SSMBA and back-translation are available in the same folder.

Training

To train BERT model on IMDB dataset with A2T attack for 4 epochs and 1 clean epoch with gamma of 0.2:

python train.py \
    --train imdb \
    --eval imdb \
    --model-type bert \
    --model-save-path ./example \
    --num-epochs 4 \
    --num-clean-epochs 1 \
    --num-adv-examples 0.2 \
    --attack-epoch-interval 1 \
    --attack a2t \
    --learning-rate 5e-5 \
    --num-warmup-steps 100 \
    --grad-accumu-steps 1 \
    --checkpoint-interval-epochs 1 \
    --seed 42

You can also pass roberta to train RoBERTa model instead of BERT model. To select other datasets from the paper, pass rt (MR), yelp, or snli for --train and --eval.

This script is actually just to run the Trainer class from the TextAttack package. To checkout how training is performed, please checkout the Trainer class.

Evaluation

To evalute the accuracy, robustness, and interpretability of our trained model from above, run

python evaluate.py \
    --dataset imdb \
    --model-type bert \
    --checkpoint-paths ./example_run \
    --epoch 4 \
    --save-log \
    --accuracy \
    --robustness \
    --attacks a2t a2t_mlm textfooler bae pwws pso \
    --interpretability 

This takes the last checkpoint model (--epoch 4) and evaluates its accuracy on both IMDB and Yelp dataset (for cross-domain accuracy). It also evalutes the model's robustness against A2T, A2T-MLM, TextFooler, BAE, PWWS, and PSO attacks. Lastly, with the --interpretability flag, AOPC scores are calculated.

Note that you will have to run --robustness and --interpretability with --accuracy (or after you separately evaluate accuracy) since both robustness and intepretability evaluations rely on the accuracy evaluation to know which samples the model was able to predict correctly. By default 1000 samples are attacked to evaluate robustness. Likewise, 1000 samples are used to calculate AOPC score for interpretability.

If you're evaluating multiple models for comparison, it's also advised that you provide all the checkpoint paths together to --checkpoint-paths. This is because the samples that are correctly by each model will be different, so we first need to identify the intersection of the all correct predictions before using them to evaluate robustness for all the models. This will allow fairer comparison of models' robustness rather than using attack different samples for each model.

Data Augmentation

Lastly, we also provide augment.py which we used to perform data augmentation methods such as SSMBA and back-translation.

Following is an example command for augmenting imdb dataset with SSMBA method.

python augment.py \
    --dataset imdb \
    --augmentation ssmba \
    --output-path ./augmented_data \
    --seed 42 

You can also pass backtranslation to --augmentation.

Owner
QData
http://www.cs.virginia.edu/yanjun/
QData
Correctly generate plurals, ordinals, indefinite articles; convert numbers to words

NAME inflect.py - Correctly generate plurals, singular nouns, ordinals, indefinite articles; convert numbers to words. SYNOPSIS import inflect p = in

Jason R. Coombs 762 Dec 29, 2022
ASCEND Chinese-English code-switching dataset

ASCEND (A Spontaneous Chinese-English Dataset) introduces a high-quality resource of spontaneous multi-turn conversational dialogue Chinese-English code-switching corpus collected in Hong Kong.

CAiRE 11 Dec 09, 2022
Common Voice Dataset explorer

Common Voice Dataset Explorer Common Voice Dataset is by Mozilla Made during huggingface finetuning week Usage pip install -r requirements.txt streaml

Ceyda Cinarel 22 Nov 16, 2022
Main repository for the chatbot Bobotinho.

Bobotinho Bot Main repository for the chatbot Bobotinho. ℹ️ Introduction Twitch chatbot with entertainment commands. ‎ 💻 Technologies Concurrent code

Bobotinho 14 Nov 29, 2022
Predicting the usefulness of reviews given the review text and metadata surrounding the reviews.

Predicting Yelp Review Quality Table of Contents Introduction Motivation Goal and Central Questions The Data Data Storage and ETL EDA Data Pipeline Da

Jeff Johannsen 3 Nov 27, 2022
ADCS - Automatic Defect Classification System (ADCS) for SSMC

Table of Contents Table of Contents ADCS Overview Summary Operator's Guide Demo System Design System Logic Training Mode Production System Flow Folder

Tam Zher Min 2 Jun 24, 2022
Yodatranslator is a simple translator English to Yoda-language

yodatranslator Overview yodatranslator is a simple translator English to Yoda-language. Project is created for educational purposes. It is intended to

1 Nov 11, 2021
运小筹公众号是致力于分享运筹优化(LP、MIP、NLP、随机规划、鲁棒优化)、凸优化、强化学习等研究领域的内容以及涉及到的算法的代码实现。

OlittleRer 运小筹公众号是致力于分享运筹优化(LP、MIP、NLP、随机规划、鲁棒优化)、凸优化、强化学习等研究领域的内容以及涉及到的算法的代码实现。编程语言和工具包括Java、Python、Matlab、CPLEX、Gurobi、SCIP 等。 关注我们: 运筹小公众号 有问题可以直接在

运小筹 151 Dec 30, 2022
Code Implementation of "Learning Span-Level Interactions for Aspect Sentiment Triplet Extraction".

Span-ASTE: Learning Span-Level Interactions for Aspect Sentiment Triplet Extraction ***** New March 31th, 2022: Scikit-Style API for Easy Usage *****

Chia Yew Ken 111 Dec 23, 2022
Comprehensive-E2E-TTS - PyTorch Implementation

A Non-Autoregressive End-to-End Text-to-Speech (text-to-wav), supporting a family of SOTA unsupervised duration modelings. This project grows with the research community, aiming to achieve the ultima

Keon Lee 114 Nov 13, 2022
Code for the paper in Findings of EMNLP 2021: "EfficientBERT: Progressively Searching Multilayer Perceptron via Warm-up Knowledge Distillation".

This repository contains the code for the paper in Findings of EMNLP 2021: "EfficientBERT: Progressively Searching Multilayer Perceptron via Warm-up Knowledge Distillation".

Chenhe Dong 28 Nov 10, 2022
Fake Shakespearean Text Generator

Fake Shakespearean Text Generator This project contains an impelementation of stateful Char-RNN model to generate fake shakespearean texts. Files and

Recep YILDIRIM 1 Feb 15, 2022
Python powered crossword generator with database with 20k+ polish words

crossword_generator Generate simple crossword puzzle from words and definitions fetched from krzyżowki.edu.pl endpoints -/ string:word - returns js

0 Jan 04, 2022
A high-level Python library for Quantum Natural Language Processing

lambeq About lambeq is a toolkit for quantum natural language processing (QNLP). Documentation: https://cqcl.github.io/lambeq/ Getting started Prerequ

Cambridge Quantum 315 Jan 01, 2023
Non-Autoregressive Translation with Layer-Wise Prediction and Deep Supervision

Deeply Supervised, Layer-wise Prediction-aware (DSLP) Transformer for Non-autoregressive Neural Machine Translation

Chenyang Huang 37 Jan 04, 2023
Contains descriptions and code of the mini-projects developed in various programming languages

TexttoSpeechAndLanguageTranslator-project introduction A pleasant application where the client will be given buttons like play,reset and exit. The cli

Adarsh Reddy 1 Dec 22, 2021
Unsupervised text tokenizer focused on computational efficiency

YouTokenToMe YouTokenToMe is an unsupervised text tokenizer focused on computational efficiency. It currently implements fast Byte Pair Encoding (BPE)

VK.com 847 Dec 19, 2022
NLPIR tutorial: pretrain for IR. pre-train on raw textual corpus, fine-tune on MS MARCO Document Ranking

pretrain4ir_tutorial NLPIR tutorial: pretrain for IR. pre-train on raw textual corpus, fine-tune on MS MARCO Document Ranking 用作NLPIR实验室, Pre-training

ZYMa 12 Apr 07, 2022
Using context-free grammar formalism to parse English sentences to determine their structure to help computer to better understand the meaning of the sentence.

Sentance Parser Executing the Program Make sure Python 3.6+ is installed. Install requirements $ pip install requirements.txt Run the program:

Vaibhaw 12 Sep 28, 2022
Code for the Findings of NAACL 2022(Long Paper): AdapterBias: Parameter-efficient Token-dependent Representation Shift for Adapters in NLP Tasks

AdapterBias: Parameter-efficient Token-dependent Representation Shift for Adapters in NLP Tasks arXiv link: upcoming To be published in Findings of NA

Allen 16 Nov 12, 2022