public repo for ESTER dataset and modeling (EMNLP'21)

Related tags

Deep LearningESTER
Overview

Project / Paper Introduction

This is the project repo for our EMNLP'21 paper: https://arxiv.org/abs/2104.08350

Here, we provide brief descriptions of the final data and detailed instructions to reproduce results in our paper. For more details, please refer to the paper.

Data

Final data used for the experiments are saved in ./data/ folder with train/dev/test splits. Most data fields are straightforward. Just a few notes,

  • question_event: this field is not provided by annotators nor used for our experiments. We simply use some heuristic rules based on POS tags to extract possible events in the questions. Users are encourages to try alternative tools such semantic role labeling.
  • original_events and indices are the annotator-provided event triggers plus their indices in the context.
  • answer_texts and answer_indices (in train and dev) are the annotator-provided answers plus their indices in the context.

Please Note: the evaluation script below (II) only works for the dev set. Please refer to Section III for submission to our leaderboard: https://eventqa.github.io

Models

I. Install packages.

We list the packages in our environment in env.yml file for your reference. Below are a few key packages.

  • python=3.8.5
  • pytorch=1.6.0
  • transformers=3.1.0
  • cudatoolkit=10.1.243
  • apex=0.1

To install apex, you can either follow official instruction: https://github.com/NVIDIA/apex or conda: https://anaconda.org/conda-forge/nvidia-apex

II. Replicate results in our paper.

1. Download trained models.

For reproduction purpose, we release all trained models.

  • Download link: https://drive.google.com/drive/folders/1bTCb4gBUCaNrw2chleD4RD9JP1_DOWjj?usp=sharing.
  • We only provide models with the best "hyper-parameters", and each comes with three random seeds: 5, 7, 23.
  • Make several directories to save models ./output/, ./output/facebook/ and ./output/allenai/.
  • For BART models, download them into ./output/facebook/.
  • For UnifiedQA models, download them into ./output/allenai/.
  • All other models can be saved in ./output/ directly. These ensure evaluation scripts run properly below.

2. Zero-shot performances in Table 3.

Run bash ./code/eval_zero_shot.sh. Model options are provided in the script.

3. Generative QA Fine-tuning performances in Table 3.

Run bash ./code/eval_ans_gen.sh. Make sure the following arguments are set correctly in the script.

  • Model Options provided in the script
  • Set suffix=""
  • Set lrs and batch according to model options. You can find these numbers in Appendix G of the paper.

4. Figure 6: UnifiedQA-large model trained with sub-samples.

Run bash ./code/eval_ans_gen.sh`. Make sure the following arguments are set correctly in the script.

  • model="allenai/unifiedqa-t5-large"
  • suffix={"_500" | "_1000" | "_2000" | "_3000" | "_4000"}
  • Set lrs and batch accordingly. You can find these information in the folder name containing the trained model objects.

5. Table 4: 500 original annotations v.s. completed

  • bash ./code/eval_ans_gen.sh with model="allenai/unifiedqa-t5-large and suffix="_500original
  • bash ./code/eval_ans_gen.sh with model="allenai/unifiedqa-t5-large and suffix="_500completed
  • Set lrs and batch accordingly again.

6. Extractive QA Fine-tuning performances in Table 3.

Simply run bash ./code/eval_span_pred.sh as it is.

7. Figure 8: Extractive QA Fine-tuning performances by changing positive weights.

  • Run bash ./code/eval_span_pred.sh.
  • Set pw, lrs and batch according to model folder names again.

III. Submission to ESTER Leaderboard

  • Set model_dir to your target models
  • Run leaderboard.sh, which outputs pred_dev.json and pred_test.json under ./output
  • If you write your own code to output predictions, make sure they follow our original sample order.
  • Email pred_test.json to us following in the format specified here: https://eventqa.github.io Sample outputs (using one of our UnifiedQA-large models) are provided under ./output

IV. Model Training

We also provide the model training scripts below.

1. Generative QA: Fine-tuning in Table 3.

  • Run bash ./code/run_ans_generation.sh.
  • Model options and hyper-parameter search range are provided in the script.
  • We use --fp16 argument to activate apex for GPU memory efficient training except for UnifiedQA-t5-large (trained on A100 GPU).

2. Figure 6: UnifiedQA-large model trained with sub-samples.

  • Run bash ./code/run_ans_gen_subsample.sh.
  • Set sample_size variable accordingly in the script.

3. Table 4: 500 original annotations v.s. completed

  • Run bash ./code/run_ans_gen.sh with model="allenai/unifiedqa-t5-large and suffix="_500original
  • Run bash ./code/run_ans_gen.sh with model="allenai/unifiedqa-t5-large and suffix="_500completed

4. Extractive QA Fine-tuning in Table 3 + Figure 8

Simply run bash ./code/run_span_pred.sh as it is.

Owner
PlusLab
Peng's Language Understanding & Synthesis Lab at UCLA and USC
PlusLab
Implementation of temporal pooling methods studied in [ICIP'20] A Comparative Evaluation Of Temporal Pooling Methods For Blind Video Quality Assessment

Implementation of temporal pooling methods studied in [ICIP'20] A Comparative Evaluation Of Temporal Pooling Methods For Blind Video Quality Assessment

Zhengzhong Tu 5 Sep 16, 2022
PyTorch implementation(s) of various ResNet models from Twitch streams.

pytorch-resnet-twitch PyTorch implementation(s) of various ResNet models from Twitch streams. Status: ResNet50 currently not working. Will update in n

Daniel Bourke 3 Jan 11, 2022
Re-implement CycleGAN in Tensorlayer

CycleGAN_Tensorlayer Re-implement CycleGAN in TensorLayer Original CycleGAN Improved CycleGAN with resize-convolution Prerequisites: TensorLayer Tenso

89 Aug 15, 2022
Unofficial PyTorch Implementation of "DOLG: Single-Stage Image Retrieval with Deep Orthogonal Fusion of Local and Global Features"

Pytorch Implementation of Deep Orthogonal Fusion of Local and Global Features (DOLG) This is the unofficial PyTorch Implementation of "DOLG: Single-St

DK 96 Jan 06, 2023
Colab notebook for openai/glide-text2im.

GLIDE text2im on Colab This repository provides a Colab notebook to produce images conditioned on text prompts with GLIDE [1]. Usage Run text2im.ipynb

Wok 19 Oct 19, 2022
Implementation of Graph Transformer in Pytorch, for potential use in replicating Alphafold2

Graph Transformer - Pytorch Implementation of Graph Transformer in Pytorch, for potential use in replicating Alphafold2. This was recently used by bot

Phil Wang 97 Dec 28, 2022
Consistency Regularization for Adversarial Robustness

Consistency Regularization for Adversarial Robustness Official PyTorch implementation of Consistency Regularization for Adversarial Robustness by Jiho

40 Dec 17, 2022
This repository contains a Ruby API for utilizing TensorFlow.

tensorflow.rb Description This repository contains a Ruby API for utilizing TensorFlow. Linux CPU Linux GPU PIP Mac OS CPU Not Configured Not Configur

somatic labs 825 Dec 26, 2022
Learning Energy-Based Models by Diffusion Recovery Likelihood

Learning Energy-Based Models by Diffusion Recovery Likelihood Ruiqi Gao, Yang Song, Ben Poole, Ying Nian Wu, Diederik P. Kingma Paper: https://arxiv.o

Ruiqi Gao 41 Nov 22, 2022
Trainable PyTorch reproduction of AlphaFold 2

OpenFold A faithful PyTorch reproduction of DeepMind's AlphaFold 2. Features OpenFold carefully reproduces (almost) all of the features of the origina

AQ Laboratory 1.7k Dec 29, 2022
Deep Learning with PyTorch made easy 🚀 !

Deep Learning with PyTorch made easy 🚀 ! Carefree? carefree-learn aims to provide CAREFREE usages for both users and developers. It also provides a c

381 Dec 22, 2022
Crawl & visualize ICLR papers and reviews

Crawl and Visualize ICLR 2022 OpenReview Data Descriptions This Jupyter Notebook contains the data crawled from ICLR 2022 OpenReview webpages and thei

Federico Berto 75 Dec 05, 2022
Official code repository for the work: "The Implicit Values of A Good Hand Shake: Handheld Multi-Frame Neural Depth Refinement"

Handheld Multi-Frame Neural Depth Refinement This is the official code repository for the work: The Implicit Values of A Good Hand Shake: Handheld Mul

55 Dec 14, 2022
True per-item rarity for Loot

True-Rarity True per-item rarity for Loot (For Adventurers) and More Loot A.K.A mLoot each out/true_rarity_{item_type}.json file contains probabilitie

Dan R. 3 Jul 26, 2022
RARA: Zero-shot Sim2Real Visual Navigation with Following Foreground Cues

RARA: Zero-shot Sim2Real Visual Navigation with Following Foreground Cues FGBG (foreground-background) pytorch package for defining and training model

Klaas Kelchtermans 1 Jun 02, 2022
Try out deep learning models online on Google Colab

Try out deep learning models online on Google Colab

Erdene-Ochir Tuguldur 1.5k Dec 27, 2022
Pretrained language model and its related optimization techniques developed by Huawei Noah's Ark Lab.

Pretrained Language Model This repository provides the latest pretrained language models and its related optimization techniques developed by Huawei N

HUAWEI Noah's Ark Lab 2.6k Jan 01, 2023
Distributionally robust neural networks for group shifts

Distributionally Robust Neural Networks for Group Shifts: On the Importance of Regularization for Worst-Case Generalization This code implements the g

151 Dec 25, 2022
Office source code of paper UniFuse: Unidirectional Fusion for 360$^\circ$ Panorama Depth Estimation

UniFuse (RAL+ICRA2021) Office source code of paper UniFuse: Unidirectional Fusion for 360$^\circ$ Panorama Depth Estimation, arXiv, Demo Preparation I

Alibaba 47 Dec 26, 2022
Code release for the ICML 2021 paper "PixelTransformer: Sample Conditioned Signal Generation".

PixelTransformer Code release for the ICML 2021 paper "PixelTransformer: Sample Conditioned Signal Generation". Project Page Installation Please insta

Shubham Tulsiani 24 Dec 17, 2022