Official Pytorch implementation for AAAI2021 paper (RSPNet: Relative Speed Perception for Unsupervised Video Representation Learning)

Related tags

Deep LearningRSPNet
Overview

RSPNet

Official Pytorch implementation for AAAI2021 paper "RSPNet: Relative Speed Perception for Unsupervised Video Representation Learning"

[Supplementary Materials]

Getting Started

Install Dependencies

All dependencies can be installed using pip:

python -m pip install -r requirements.txt

Our experiments run on Python 3.7 and PyTorch 1.6. Other versions should work but are not tested.

Transcode Videos (Optional)

This step is optional but will increase the data loading speed dramatically.

We decode the videos on the fly while training so we don't need to split frames. This makes disk IO a lot faster but increases CPU usage. This transcode step aims at reducing CPU consumed by decoding by 1) lower video resolution. 2) add more key frames.

To perform transcode, you need to have ffmpeg installed, then run:

python utils/transcode_dataset.py PATH/TO/ORIGIN_VIDEOS PATH/TO/TRANSCODED_VIDEOS

Be warned, this will use all your CPU and will take several hours (on our Intel E5-2630 *2 workstation) to complete.

Prepare Datasets

Your are expected to prepare date for pre-training (Kinetics-400 dataset) and fine-tuning (UCF101, HMDB51 and Something-something-v2 datasets). To let the scripts find datasets on your system, the recommended way is to create symbolic links in ./data directory to the actual path. We found this solution flexible.

The expected directory hierarchy is as follow:

├── data
│   ├── hmdb51
│   │   ├── metafile
│   │   │   ├── brush_hair_test_split1.txt
│   │   │   └── ...
│   │   └── videos
│   │       ├── brush_hair
│   │       │   └── *.avi
│   │       └── ...
│   ├── UCF101
│   │   ├── ucfTrainTestlist
│   │   │   ├── classInd.txt
│   │   │   ├── testlist01.txt
│   │   │   ├── trainlist01.txt
│   │   │   └── ...
│   │   └── UCF-101
│   │       ├── ApplyEyeMakeup
│   │       │   └── *.avi
│   │       └── ...
│   ├── kinetics400
│   │   ├── train_video
│   │   │   ├── answering_questions
│   │   │   │   └── *.mp4
│   │   │   └── ...
│   │   └── val_video
│   │       └── (same as train_video)
│   ├── kinetics100
│   │   └── (same as kinetics400)
│   └── smth-smth-v2
│       ├── 20bn-something-something-v2
│       │   └── *.mp4
│       └── annotations
│           ├── something-something-v2-labels.json
│           ├── something-something-v2-test.json
│           ├── something-something-v2-train.json
│           └── something-something-v2-validation.json
└── ...

Alternatively, you can change the path in config/dataset to match your system.

Build Kinetics-100 dataset (Optional)

Some of our ablation study experiments use the Kinetics-100 dataset for pre-training. This dataset is built by extract 100 classes from Kinetics-400, which has the smallest file size on the train set.

If you have Kinetics-400 available, you can build Kinetics-100 by:

python -m utils.build_kinetics_subset

This script will create symbolic links instead of copy data. It is expected to complete in a minute.

We have included a pre-built one at data/kinetics100_links and created the symbolic link data/kinetics100 that related to it. You need to have data/kinetics400 available at runtime.

Pre-training on Pretext Tasks

Now you have set up the environment. Run the following command to pre-train your models on pretext tasks.

export CUDA_VISIBLE_DEVICES=0,1,2,3
# Architecture: C3D
python pretrain.py -e exps/pretext-c3d -c config/pretrain/c3d.jsonnet
# Architecture: ResNet-18
python pretrain.py -e exps/pretext-resnet18 -c config/pretrain/resnet18.jsonnet
# Architecture: S3D-G
python pretrain.py -e exps/pretext-s3dg -c config/pretrain/s3dg.jsonnet
# Architecture: R(2+1)D
python pretrain.py -e exps/pretext-r2plus1d -c config/pretrain/r2plus1d.jsonnet

You can use kinetics100 dataset for training by editing config/pretrain/moco-train-base.jsonnet (line 13)

Action Recognition

After pre-trained on pretext tasks, these models are fine-tuned to perform action recognition task on UCF101, HMDB51 and Something-something-v2 datasets.

export CUDA_VISIBLE_DEVICES=0,1
# Dataset: UCF101
#     Architecture: C3D [email protected]=76.71%
python finetune.py -c config/finetune/ucf101_c3d.jsonnet \
                   --mc exps/pretext-c3d/model_best.pth.tar \
                   -e exps/ucf101-c3d
#     Architecture: ResNet-18 [email protected]=74.33%
python finetune.py -c config/finetune/ucf101_resnet18.jsonnet \
                   --mc exps/pretext-resnet18/model_best.pth.tar \
                   -e exps/ucf101-resnet18
#     Architecture: S3D-G [email protected]=89.9%
python finetune.py -c config/finetune/ucf101_s3dg.jsonnet \
                   --mc exps/pretext-s3dg/model_best.pth.tar \
                   -e exps/ucf101-s3dg
#     Architecture: R(2+1)D [email protected]=81.1%
python finetune.py -c config/finetune/ucf101_r2plus1d.jsonnet \
                   --mc exps/pretext-r2plus1d/model_best.pth.tar \
                   -e exps/ucf101-r2plus1d

# Dataset: HMDB51
#     Architecture: C3D [email protected]=44.58%
python finetune.py -c config/finetune/hmdb51_c3d.jsonnet \
                   --mc exps/pretext-c3d/model_best.pth.tar \
                   -e exps/hmdb51-c3d
#     Architecture: ResNet-18 [email protected]=41.83%
python finetune.py -c config/finetune/hmdb51_resnet18.jsonnet \
                   --mc exps/pretext-resnet18/model_best.pth.tar \
                   -e exps/hmdb51-resnet18
#     Architecture: S3D-G [email protected]=59.6%
python finetune.py -c config/finetune/hmdb51_s3dg.jsonnet \
                   --mc exps/pretext-s3dg/model_best.pth.tar \
                   -e exps/hmdb51-s3dg
#     Architecture: R(2+1)D [email protected]=44.6%
python finetune.py -c config/finetune/hmdb51_r2plus1d.jsonnet \
                   --mc exps/pretext-r2plus1d/model_best.pth.tar \
                   -e exps/hmdb51-r2plus1d

# Dataset: Something-something-v2
#     Architecture: C3D [email protected]=47.76%
python finetune.py -c config/finetune/smth_smth_c3d.jsonnet \
                   --mc exps/pretext-c3d/model_best.pth.tar \
                   -e exps/smthv2-c3d
#     Architecture: ResNet-18 [email protected]=44.02%
python finetune.py -c config/finetune/smth_smth_resnet18.jsonnet \
                   --mc exps/pretext-resnet18/model_best.pth.tar \
                   -e exps/smthv2-resnet18
#     Architecture: S3D-G [email protected]=55.03%
python finetune.py -c config/finetune/smth_smth_s3dg.jsonnet \
                   --mc exps/pretext-s3dg/model_best.pth.tar \
                   -e exps/smthv2-s3dg

Results and Pre-trained Models

Architecture Pre-trained dataset Pre-training epoch Pre-trained model Acc. on UCF101 Acc. on HMDB51
S3D-G Kinetics-400 1000 Download link 93.7 64.7
S3D-G Kinetics-400 200 Download link 89.9 59.6
R(2+1)D Kinetics-400 200 Download link 81.1 44.6
ResNet-18 Kinetics-400 200 Download link 74.3 41.8
C3D Kinetics-400 200 Download link 76.7 44.6

Video Retrieval

The pretrained model can also be used in searching relevant videos based on the given query video.

export CUDA_VISIBLE_DEVICES=0 # use single GPU 
python retrieval.py -c config/retrieval/ucf101_resnet18.jsonnet \
                    --mc exps/pretext-resnet18/model_best.pth.tar \
                    -e exps/retrieval-resnet18    

The video retrieval result in our paper

Architecture k=1 k=5 k=10 k=20 k=50
C3D 36.0 56.7 66.5 76.3 87.7
ResNet-18 41.1 59.4 68.4 77.8 88.7

Visualization

We further visualize the region of interest (RoI) that contributes most to the similarity score using the class activation map (CAM) technique.

export CUDA_VISIBLE_DEVICES=0,1
python visualization.py -c config/pretrain/s3dg.jsonnet \
                        --load-model exps/pretext-s3dg/model_best.pth.tar \
                        -e exps/visual-s3dg \
                        -x '{batch_size: 1}'

The cam visualization results will be plotted in png files like

Troubleshoot

  • DECORDError cannot find video stream with wanted index: -1

    Some video from Kinetics dataset does not contain a valid video stream for some unknown reason. To filter them out, run python utils/verify_video.py PATH/TO/VIDEOS, then copy the output to the blacklist config in config/dataset/kinetics{400,100}.libsonnet. You need to have ffmpeg installed.

Citation

Please cite the following paper if you feel RSPNet useful to your research

@InProceedings{chen2020RSPNet,
author = {Peihao Chen, Deng Huang, Dongliang He, Xiang Long, Runhao Zeng, Shilei Wen, Mingkui Tan, and Chuang Gan},
title = {RSPNet: Relative Speed Perception for Unsupervised Video Representation Learning},
booktitle = {The AAAI Conference on Artificial Intelligence (AAAI)},
year = {2021}
}

Contact

For any question, please file an issue or contact

Peihao Chen: [email protected]
Deng Huang: [email protected]
Comments
  • r(2+1) d -18 pretrained model not fully reproducible

    r(2+1) d -18 pretrained model not fully reproducible

    Hi, I finetuned the given pre-trained r(2+1)d model on ucf-101 using the given finetuning code. It only achieves (76 -77%) accuracy. Can you confirm if the given model is the correct one. I use the same setup as mentioned in the readme.

    opened by fmthoker 3
  • framework image

    framework image

    hello, thank you for your great work. it's so smart idea!

    can you explain about framework image? i understand about RSP task, A-VID task is learned in 1 iteration. i think that it means 'anchor is same'. and i saw the algorithm, just sampling K clips in video V\v+, however, in paper fig 2. two clips in video, 1x clip and 2x clip 's features(green color) are going to g_a header and do contrastive learning. i think about you want to show us randomly selected speed.... is right? in real experiment, just c_i, c_j, {c_n}(K) clips in there? not 2K?

    thank you

    opened by youwantsy 2
  • The pre-training model of s3d-g model based on Imagenet and dynamics-400 data set?

    The pre-training model of s3d-g model based on Imagenet and dynamics-400 data set?

    Where can I download the pre training model of s3d-g model based on Imagenet and dynamics-400 dataset? Or can you upload it to this repository? 请问哪里可以下载到基于ImageNet和Kinetics-400数据集的S3D-G模型的预训练模型?或者请问作者可以上传一下公开吗?

    opened by LiangSiyv 2
  • Question about computational resources

    Question about computational resources

    Hi, Thanks for your wonderful paper and code. I want to know the computational resources of your experiments. 1. What and how many GPUs you use? 2. The training time of pretraining on K400 for 200 epochs. 3. The training time of finetuning on UCF101, HMDB51, Something-V2, respectively. Looking forward to your reply. Thanks.

    opened by wjn922 2
  • 'No configuration setting found for key force_n_crop'

    'No configuration setting found for key force_n_crop'

    I downloaded your S3D-G pre-trained model for my action recognition task on UCF101 but I keep getting this error:

    argument type: <class 'str'> Setting ulimit -n 8192 world_size=1 Using dist_url=tcp://127.0.0.1:36879 Local Rank: 0 2021-12-30 07:31:39,148|INFO |Args = Args(parser=None, config='config/finetune/ucf101_s3dg.jsonnet', ext_config=[], debug=False, experiment_dir=PosixPath('exps/ucf101-s3dg'), _run_dir=PosixPath('exps/ucf101-s3dg/run_2_20211230_073138'), load_checkpoint=None, load_model=None, validate=False, moco_checkpoint='exps/pretext-s3dg/model_best_s3dg_200epoch.pth.tar', seed=None, world_size=1, _continue=False, no_scale_lr=False) 2021-12-30 07:31:39,149|INFO |cudnn.benchmark = True 2021-12-30 07:31:39,278|INFO |Config = batch_size = 4 dataset { annotation_path = "data/UCF101/ucfTrainTestlist" fold = 1 mean = [ 0.485 0.456 0.406 ] name = "ucf101" num_classes = 101 root = "data/UCF101/UCF-101" std = [ 0.229 0.224 0.225 ] } final_validate { batch_size = 4 } log_interval = 10 method = "from-scratch" model { arch = "s3dg" } model_type = "multitask" num_epochs = 50 num_workers = 8 optimizer { dampening = 0 lr = 0.005 milestones = [ 50 100 150 ] momentum = 0.9 nesterov = false patience = 10 schedule = "cosine" weight_decay = 0.0001 } spatial_transforms { color_jitter { brightness = 0 contrast = 0 hue = 0 saturation = 0 } crop_area { max = 1 min = 0.25 } gray_scale = 0 size = 224 } temporal_transforms { frame_rate = 25 size = 64 strides = [ { stride = 1 weight = 1 } ] validate { final_n_crop = 10 n_crop = 1 stride = 1 } } validate { batch_size = 4 } 2021-12-30 07:31:39,282|INFO |Using global get_model_class({'arch': 's3dg'}) 2021-12-30 07:31:39,283|INFO |Using MultiTask Wrapper 2021-12-30 07:31:39,283|WARNING |<class 'moco.split_wrapper.MultiTaskWrapper'> using groups: 1 2021-12-30 07:31:39,383|INFO |Found fc: fc with in_features: 1024 2021-12-30 07:31:42,488|INFO |Building Dataset: VID: False, Split=train 2021-12-30 07:31:42,488|INFO |Temporal transform type: clip Traceback (most recent call last): File "finetune.py", line 502, in main() File "finetune.py", line 498, in main mp.spawn(main_worker, args=(args, dist_url,), nprocs=args.world_size) File "/home/ubuntu/anaconda3/envs/ucf101/lib/python3.8/site-packages/torch/multiprocessing/spawn.py", line 200, in spawn return start_processes(fn, args, nprocs, join, daemon, start_method='spawn') File "/home/ubuntu/anaconda3/envs/ucf101/lib/python3.8/site-packages/torch/multiprocessing/spawn.py", line 158, in start_processes while not context.join(): File "/home/ubuntu/anaconda3/envs/ucf101/lib/python3.8/site-packages/torch/multiprocessing/spawn.py", line 119, in join raise Exception(msg) Exception:

    -- Process 0 terminated with the following error: Traceback (most recent call last): File "/home/ubuntu/anaconda3/envs/ucf101/lib/python3.8/site-packages/torch/multiprocessing/spawn.py", line 20, in _wrap fn(i, *args) File "/home/ubuntu/RSPNet/finetune.py", line 452, in main_worker engine = Engine(args, cfg, local_rank=local_rank) File "/home/ubuntu/RSPNet/finetune.py", line 171, in init self.train_loader = self.data_loader_factory.build( File "/home/ubuntu/RSPNet/datasets/classification/init.py", line 81, in build temporal_transform = self.get_temporal_transform(split) File "/home/ubuntu/RSPNet/datasets/classification/init.py", line 276, in get_temporal_transform if tt_cfg.get_bool("force_n_crop"): File "/home/ubuntu/anaconda3/envs/ucf101/lib/python3.8/site-packages/pyhocon/config_tree.py", line 310, in get_bool string_value = self.get_string(key, default) File "/home/ubuntu/anaconda3/envs/ucf101/lib/python3.8/site-packages/pyhocon/config_tree.py", line 221, in get_string value = self.get(key, default) File "/home/ubuntu/anaconda3/envs/ucf101/lib/python3.8/site-packages/pyhocon/config_tree.py", line 209, in get return self._get(ConfigTree.parse_key(key), 0, default) File "/home/ubuntu/anaconda3/envs/ucf101/lib/python3.8/site-packages/pyhocon/config_tree.py", line 151, in _get raise ConfigMissingException(u"No configuration setting found for key {key}".format(key='.'.join(key_path[:key_index + 1]))) pyhocon.exceptions.ConfigMissingException: 'No configuration setting found for key force_n_crop'

    opened by aloma85 0
Releases(pretrained_model)
A graph-to-sequence model for one-step retrosynthesis and reaction outcome prediction.

Graph2SMILES A graph-to-sequence model for one-step retrosynthesis and reaction outcome prediction. 1. Environmental setup System requirements Ubuntu:

29 Nov 18, 2022
Code for database and frontend of webpage for Neural Fields in Visual Computing and Beyond.

Neural Fields in Visual Computing—Complementary Webpage This is based on the amazing MiniConf project from Hendrik Strobelt and Sasha Rush—thank you!

Brown University Visual Computing Group 29 Nov 30, 2022
Defocus Map Estimation and Deblurring from a Single Dual-Pixel Image

Defocus Map Estimation and Deblurring from a Single Dual-Pixel Image This repository is an implementation of the method described in the following pap

21 Dec 15, 2022
This repository is an implementation of paper : Improving the Training of Graph Neural Networks with Consistency Regularization

CRGNN Paper : Improving the Training of Graph Neural Networks with Consistency Regularization Environments Implementing environment: GeForce RTX™ 3090

THUDM 28 Dec 09, 2022
This repo is duplication of jwyang/faster-rcnn.pytorch

Faster RCNN Pytorch This repo is duplication of jwyang/faster-rcnn.pytorch C/C++ code are removed and easier to study. Python 3.8.5 Ubuntu 20.04.1 LTS

Kim Jihwan 1 Jan 14, 2022
Image Segmentation Evaluation

Image Segmentation Evaluation Martin Keršner, [email protected] Evaluation

Martin Kersner 273 Oct 28, 2022
Contra is a lightweight, production ready Tensorflow alternative for solving time series prediction challenges with AI

Contra AI Engine A lightweight, production ready Tensorflow alternative developed by Styvio styvio.com » How to Use · Report Bug · Request Feature Tab

styvio 14 May 25, 2022
PyTorch Kafka Dataset: A definition of a dataset to get training data from Kafka.

PyTorch Kafka Dataset: A definition of a dataset to get training data from Kafka.

ERTIS Research Group 7 Aug 01, 2022
Job-Recommend-Competition - Vectorwise Interpretable Attentions for Multimodal Tabular Data

SiD - Simple Deep Model Vectorwise Interpretable Attentions for Multimodal Tabul

Jungwoo Park 40 Dec 22, 2022
Enigma-Plus - Python based Enigma machine simulator with some extra features

Enigma-Plus Python based Enigma machine simulator with some extra features Examp

1 Jan 05, 2022
Contrastive Loss Gradient Attack (CLGA)

Contrastive Loss Gradient Attack (CLGA) Official implementation of Unsupervised Graph Poisoning Attack via Contrastive Loss Back-propagation, WWW22 Bu

12 Dec 23, 2022
To build a regression model to predict the concrete compressive strength based on the different features in the training data.

Cement-Strength-Prediction Problem Statement To build a regression model to predict the concrete compressive strength based on the different features

Ashish Kumar 4 Jun 11, 2022
Diverse Image Generation via Self-Conditioned GANs

Diverse Image Generation via Self-Conditioned GANs Project | Paper Diverse Image Generation via Self-Conditioned GANs Steven Liu, Tongzhou Wang, David

Steven Liu 147 Dec 03, 2022
Tensorflow implementation of the paper "HumanGPS: Geodesic PreServing Feature for Dense Human Correspondences", CVPR 2021.

HumanGPS: Geodesic PreServing Feature for Dense Human Correspondences Tensorflow implementation of the paper "HumanGPS: Geodesic PreServing Feature fo

Google Interns 50 Dec 21, 2022
SIEM Logstash parsing for more than hundred technologies

LogIndexer Pipeline Logstash Parsing Configurations for Elastisearch SIEM and OpenDistro for Elasticsearch SIEM Why this project exists The overhead o

146 Dec 29, 2022
Official Pytorch implementation of the paper "Action-Conditioned 3D Human Motion Synthesis with Transformer VAE", ICCV 2021

ACTOR Official Pytorch implementation of the paper "Action-Conditioned 3D Human Motion Synthesis with Transformer VAE", ICCV 2021. Please visit our we

Mathis Petrovich 248 Dec 23, 2022
Repo for "TableParser: Automatic Table Parsing with Weak Supervision from Spreadsheets" at [email protected]

TableParser Repo for "TableParser: Automatic Table Parsing with Weak Supervision from Spreadsheets" at DS3 Lab 11 Dec 13, 2022

Subnet Replacement Attack: Towards Practical Deployment-Stage Backdoor Attack on Deep Neural Networks

Subnet Replacement Attack: Towards Practical Deployment-Stage Backdoor Attack on Deep Neural Networks Official implementation of paper Towards Practic

Xiangyu Qi 8 Dec 30, 2022
Code for SIMMC 2.0: A Task-oriented Dialog Dataset for Immersive Multimodal Conversations

The Second Situated Interactive MultiModal Conversations (SIMMC 2.0) Challenge 2021 Welcome to the Second Situated Interactive Multimodal Conversation

Facebook Research 81 Nov 22, 2022
Learning to Initialize Neural Networks for Stable and Efficient Training

GradInit This repository hosts the code for experiments in the paper, GradInit: Learning to Initialize Neural Networks for Stable and Efficient Traini

Chen Zhu 124 Dec 30, 2022