Deep learning model, heat map, data prepo

Overview

DEEP LEARNING ON USA DEMOCRATES DEBATE

By Pamela Dekas

import sys
import csv
import re 
import nltk
import string
import unicodedata
from textblob import TextBlob
from collections import Counter
import pandas as pd
import numpy as np
from wordcloud import WordCloud
from nltk.classify import * 
from nltk.corpus import stopwords
from sklearn.metrics import f1_score, roc_auc_score
from sklearn.feature_extraction.text import CountVectorizer
from nltk.tokenize import word_tokenize
import nltk.classify.util
import matplotlib.pyplot as plt
from string import punctuation 
from nltk.corpus import stopwords
from wordcloud import STOPWORDS
import os
from sklearn.model_selection import train_test_split
from keras.datasets import imdb
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM
from keras.layers.embeddings import Embedding
from keras.preprocessing import sequence, text
from keras.callbacks import EarlyStopping
Using TensorFlow backend.



---------------------------------------------------------------------------

AttributeError                            Traceback (most recent call last)


   
     in 
    
     ()
     22 import os
     23 from sklearn.model_selection import train_test_split
---> 24 from keras.datasets import imdb
     25 from keras.models import Sequential
     26 from keras.layers import Dense


~\Anaconda3\lib\site-packages\keras\__init__.py in 
     
      ()
      1 from __future__ import absolute_import
      2 
----> 3 from . import utils
      4 from . import activations
      5 from . import applications


~\Anaconda3\lib\site-packages\keras\utils\__init__.py in 
      
       ()
      4 from . import data_utils
      5 from . import io_utils
----> 6 from . import conv_utils
      7 from . import losses_utils
      8 from . import metrics_utils


~\Anaconda3\lib\site-packages\keras\utils\conv_utils.py in 
       
        () 7 from six.moves import range 8 import numpy as np ----> 9 from .. import backend as K 10 11 ~\Anaconda3\lib\site-packages\keras\backend\__init__.py in 
        
         () ----> 1 from .load_backend import epsilon 2 from .load_backend import set_epsilon 3 from .load_backend import floatx 4 from .load_backend import set_floatx 5 from .load_backend import cast_to_floatx ~\Anaconda3\lib\site-packages\keras\backend\load_backend.py in 
         
          () 88 elif _BACKEND == 'tensorflow': 89 sys.stderr.write('Using TensorFlow backend.\n') ---> 90 from .tensorflow_backend import * 91 else: 92 # Try and load external backend. ~\Anaconda3\lib\site-packages\keras\backend\tensorflow_backend.py in 
          
           () 52 53 # Private TF Keras utils ---> 54 get_graph = tf_keras_backend.get_graph 55 # learning_phase_scope = tf_keras_backend.learning_phase_scope # TODO 56 name_scope = tf.name_scope AttributeError: module 'tensorflow.python.keras.backend' has no attribute 'get_graph' 
          
         
        
       
      
     
    
   
speech = pd.read_csv('debate_transcripts_v3_2020-02-26.csv',encoding= 'unicode_escape')
df= pd.DataFrame(speech)
dem_speakers = df["speaker"]
number_of_speakers = len(set(dem_speakers))
print("Nombre de speakers:",number_of_speakers, "speakers")

# Mean duration of speech.
print("temps moyen de parole:",np.mean(df["speaking_time_seconds"]), "seconds")
print("Dataset size:", len(df))
Nombre de speakers: 106 speakers
temps moyen de parole: 16.49230769230769 seconds
Dataset size: 5911
df.info()

   
    
RangeIndex: 5911 entries, 0 to 5910
Data columns (total 6 columns):
date                     5911 non-null object
debate_name              5911 non-null object
debate_section           5911 non-null object
speaker                  5911 non-null object
speech                   5911 non-null object
speaking_time_seconds    5395 non-null float64
dtypes: float64(1), object(5)
memory usage: 277.2+ KB

   
df.groupby('speaker')['speaking_time_seconds'].sum(level=0).nlargest(10).plot.bar()
plt.title('Repartition par temps de parole')
plt.show()

png

debate_time = df.groupby(by=['speaker', 'date']).speaking_time_seconds.sum().nlargest(15)
debate_time.plot()

   

   

png

suppresion des colonnes qui ne seront pas utilisé dans la suite du projet et creation du dataset final###

df=df.drop(['date','debate_name','debate_section','speaking_time_seconds'],1)
df.head(5)
speaker speech
0 Norah O�Donnell Good evening and welcome, the Democratic presi...
1 Gayle King And Super Tuesday is just a week away and this...
2 Norah O�Donnell And CBS News is proud to bring you this debate...
3 Gayle King And we are partnering tonight also with Twitte...
4 Norah O�Donnell Now, here are the rules for the next two hours...

PREPROCESSING

import nltk 
nltk.download('punkt')
stopwords = nltk.corpus.stopwords.words('english')
Tailored_stopwords=('im','ive','mr','weve','dont','well','will','make','us','we',
                      'I','make','got','need','want','think',
                      'going','go','one','thank','going',
                      'way','say','every','re','us','first',
                     'now','said','know','look','done','take',
                     'number','two','three','s','m',"t",
                      'let','don','tell','ve','im','mr','put','maybe','whether','many', 'll','around','thing','Secondly','doesn','lot')
#stopwords = nltk.corpus.stopwords.words('english')
stopwords = set(STOPWORDS)
stopwords= stopwords.union(Tailored_stopwords)
[nltk_data] Downloading package punkt to C:\Users\pamel.DESKTOP-O19M7N
[nltk_data]     F\AppData\Roaming\nltk_data...
[nltk_data]   Package punkt is already up-to-date!
def Text_cleansing(speech):
    speech = re.sub('@[A-Za-z0–9]+', '', str(speech))
    speech = re.sub('#', '', speech) # Enlever les '#' hash tag
    speech = re.sub('rt', '', speech)
    speech=re.sub(',',' ', speech)
    speech=re.sub('!',' ',speech)
    speech=re.sub(':',' ',speech)
    speech=re.sub("'","",speech)
    speech=re.sub('"','',speech)
    speech=speech.lower()
    speech = word_tokenize(speech)
    return speech
def remove_stopwords(speech):
    speech_clean = [word for word in speech if word not in stopwords]
    return speech_clean
                         
df['speech_tokens']= df['speech'].apply(Text_cleansing)
df.head(5)
speaker speech speech_tokens
0 Norah O�Donnell Good evening and welcome, the Democratic presi... [good, evening, and, welcome, the, democratic,...
1 Gayle King And Super Tuesday is just a week away and this... [and, super, tuesday, is, just, a, week, away,...
2 Norah O�Donnell And CBS News is proud to bring you this debate... [and, cbs, news, is, proud, to, bring, you, th...
3 Gayle King And we are partnering tonight also with Twitte... [and, we, are, panering, tonight, also, with, ...
4 Norah O�Donnell Now, here are the rules for the next two hours... [now, here, are, the, rules, for, the, next, t...
df['speech_clean']=df['speech_tokens'].apply(remove_stopwords)
df.head(5)
speaker speech speech_tokens speech_clean
0 Norah O�Donnell Good evening and welcome, the Democratic presi... [good, evening, and, welcome, the, democratic,... [good, evening, welcome, democratic, president...
1 Gayle King And Super Tuesday is just a week away and this... [and, super, tuesday, is, just, a, week, away,... [super, tuesday, week, away, biggest, primary,...
2 Norah O�Donnell And CBS News is proud to bring you this debate... [and, cbs, news, is, proud, to, bring, you, th... [cbs, news, proud, bring, debate, along, co-sp...
3 Gayle King And we are partnering tonight also with Twitte... [and, we, are, panering, tonight, also, with, ... [panering, tonight, twitter, ., home, paicipat...
4 Norah O�Donnell Now, here are the rules for the next two hours... [now, here, are, the, rules, for, the, next, t... [rules, next, hours, ., asked, question, minut...
def wordcloud(dataframe):
    Aw= df['speech_clean']
    wordCloud = WordCloud(width=500, height=300,background_color='white', max_font_size=110).generate(str(Aw))
    plt.imshow(wordCloud, interpolation="bilinear")
    plt.axis("off")
    plt.title("speech wordcloud")

wordcloud(df['speech_clean'])

png

Pour la suite du projet on reduira la liste des speakers aux candidats les plus notoires (top 7 speakers)###

df = df.loc[df.speaker.isin({'Joe Biden', 'Bernie Sanders', 'Elizabeth Warren', 'Michael Bloomberg', 'Pete Buttigieg', 'Amy Klobuchar',  'Tulsi Gabbard'})]
df.head()
df.shape
(2245, 4)

CountVectorizer et creation du dict des mots par candidat a utiliser sur les modeles ML qui seront en back-up###

Analyse Lexicale

cv = CountVectorizer(stop_words=stopwords)
df_cv = cv.fit_transform(df.speech)
df_words = pd.DataFrame(df_cv.toarray(), columns=cv.get_feature_names())
df_words.index = df.speaker
df_words = df_words.transpose()
df_words
speaker Bernie Sanders Michael Bloomberg Michael Bloomberg Bernie Sanders Pete Buttigieg Elizabeth Warren Elizabeth Warren Pete Buttigieg Joe Biden Bernie Sanders ... Amy Klobuchar Elizabeth Warren Amy Klobuchar Tulsi Gabbard Tulsi Gabbard Amy Klobuchar Amy Klobuchar Amy Klobuchar Elizabeth Warren Elizabeth Warren
00 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
000 2 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
001st 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
01 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
02 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
03 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
04 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
05 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
06 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
07 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
08 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
09 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
100 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
10000 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
100s 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
10th 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 1 0 ... 0 0 0 0 0 0 0 0 0 0
120 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
125 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
12th 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
130 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
135 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
137 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
13th 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
140 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
149 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
xinjiang 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
yachts 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
yale 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
yang 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
yanked 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
ye 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
yeah 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 1 0 0
year 1 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
yearly 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
years 2 0 0 0 0 0 0 1 0 0 ... 0 0 0 0 0 0 0 0 1 0
yellow 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
yemen 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
yemin 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
yep 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
yes 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
yesterday 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
yet 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
yo 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
york 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
yorker 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
young 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
younger 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
youngest 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
youth 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
youtube 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
zealand 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
zero 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
zeroed 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
zip 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
zone 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0

6385 rows × 2245 columns

top_dict = {}
for c in df_words.columns:
    top = df_words[c].sort_values(ascending=False).head(30)
    top_dict[c]= list(zip(top.index, top.values))
for speaker, top_words in top_dict.items():
    print(speaker)
    print(', '.join([word for word, count in top_words[0:9]]))
    print('---')
---------------------------------------------------------------------------

TypeError                                 Traceback (most recent call last)


   
     in 
    
     ()
      1 top_dict = {}
      2 for c in df_words.columns:
----> 3     top = df_words[c].sort_values(ascending=False).head(30)
      4     top_dict[c]= list(zip(top.index, top.values))
      5 for speaker, top_words in top_dict.items():


TypeError: sort_values() missing 1 required positional argument: 'by'

    
   
df2=pd.DataFrame(top_dict)
df2.head(15)
from collections import Counter
words = []
for speaker in df_words.columns:
    top = [word for (word, count) in top_dict[speaker]]
    for t in top:
        words.append(t)
Counter(words).most_common(15)
---------------------------------------------------------------------------

KeyError                                  Traceback (most recent call last)


   
     in 
    
     ()
      2 words = []
      3 for speaker in df_words.columns:
----> 4     top = [word for (word, count) in top_dict[speaker]]
      5     for t in top:
      6         words.append(t)


KeyError: 'Bernie Sanders'

    
   

Implemantation du modèle###

print(df.columns)
print(df.shape)
df['speaker'] = df['speaker'].astype(str)
Index(['speaker', 'speech', 'speech_tokens', 'speech_clean'], dtype='object')
(2245, 4)

Embedding

import gensim
RANDOM_STATE = 50
EPOCHS = 5
BATCH_SIZE = 256
EMB_DIM = 100
SAVE_MODEL = True

X = df['speech_clean']
print(X.head())
X.shape
5     [well, you�re, right, economy, really, great, ...
6                                            [senator-]
8     [think, donald, trump, thinks, would, better, ...
9     [oh, mr., bloomberg, ., let, tell, mr., putin,...
11     [know, president, russia, wants, it�s, chaos, .]
Name: speech_clean, dtype: object





(2245,)
emb_model = gensim.models.Word2Vec(sentences = X, size = EMB_DIM, window = 5, workers = 4, min_count = 1)
print('La taille du vocabulaire appris est de ',len(list(emb_model.wv.vocab)))
La taille du vocabulaire appris est de  7139
from keras.preprocessing.text import Tokenizer
import tokenize
max_length = max([len(s) for s in X])

tokenizer_new = Tokenizer()
tokenizer_new.fit_on_texts(X)

X_seq = tokenizer_new.texts_to_sequences(X)
X_fin = sequence.pad_sequences(X_seq, maxlen = max_length)
print(X_fin.shape)
(2245, 140)
emb_vec = emb_model.wv
MAX_NB_WORDS = len(list(emb_vec.vocab))
tokenizer_word_index = tokenizer_new.word_index
vocab_size = len(tokenizer_new.word_index) + 1
embedded_matrix = np.zeros((vocab_size, EMB_DIM))


for word, i in tokenizer_word_index.items():
    if i>= MAX_NB_WORDS:
        continue
    try:
        embedding_vector = emb_vec[word]
        wv_matrix[i] = embedding_vector
    except:
        pass      
embedded_matrix.shape
print(embedded_matrix)
[[0. 0. 0. ... 0. 0. 0.]
 [0. 0. 0. ... 0. 0. 0.]
 [0. 0. 0. ... 0. 0. 0.]
 ...
 [0. 0. 0. ... 0. 0. 0.]
 [0. 0. 0. ... 0. 0. 0.]
 [0. 0. 0. ... 0. 0. 0.]]

Préparation des variables

from keras.utils import to_categorical
from sklearn.preprocessing import LabelEncoder
y = df.speaker
print(y.head(10))
y.shape
5     1
6     4
8     4
9     1
11    5
12    2
13    2
15    5
21    3
23    1
Name: speaker, dtype: int32





(2245,)
Counter(y)
Counter({'Bernie Sanders': 430,
         'Michael Bloomberg': 97,
         'Pete Buttigieg': 392,
         'Elizabeth Warren': 440,
         'Joe Biden': 456,
         'Amy Klobuchar': 353,
         'Tulsi Gabbard': 77})
le=LabelEncoder()
df['speaker'] = le.fit_transform(df['speaker'])
df.head()

y = df.speaker
y.head()
print(y.shape)
print(X_fin.shape)
(2245,)
(2245, 140)
X_train, X_test, y_train, y_test = train_test_split(X_fin , y, test_size = 0.2, random_state = 42)


print(X_train.shape)
print(y_train.shape)
(1796, 140)
(1796,)

Construction des NN

model_pre_trained = Sequential()

model_pre_trained.add(Embedding(vocab_size, EMB_DIM, weights = [embedded_matrix], 
                    input_length = max_length, trainable = False))
model_pre_trained.add(LSTM(128, dropout=0.2, recurrent_dropout=0.2))
model_pre_trained.add(Dense(1, activation='softmax'))

model_pre_trained.compile(loss='categorical_crossentropy',
              optimizer='adam',
              metrics=['accuracy'])

model_pre_trained.summary()
Model: "sequential_11"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
embedding_11 (Embedding)     (None, 140, 100)          714000    
_________________________________________________________________
lstm_13 (LSTM)               (None, 128)               117248    
_________________________________________________________________
dense_9 (Dense)              (None, 1)                 129       
=================================================================
Total params: 831,377
Trainable params: 117,377
Non-trainable params: 714,000
_________________________________________________________________

Fitting

history_pre_trained = model_pre_trained.fit(X_fin, y, batch_size = BATCH_SIZE, epochs =20, verbose =1, validation_split = 0.2)
Train on 1796 samples, validate on 449 samples
Epoch 1/20
1796/1796 [==============================] - 4s 2ms/step - loss: 0.5429 - accuracy: 0.1754 - val_loss: -0.4417 - val_accuracy: 0.2472
Epoch 2/20
1796/1796 [==============================] - 3s 2ms/step - loss: -6.7429 - accuracy: 0.1776 - val_loss: -14.1017 - val_accuracy: 0.2472
Epoch 3/20
1796/1796 [==============================] - 3s 2ms/step - loss: -15.8550 - accuracy: 0.1776 - val_loss: -19.5441 - val_accuracy: 0.2472
Epoch 4/20
1796/1796 [==============================] - 3s 2ms/step - loss: -20.7949 - accuracy: 0.1776 - val_loss: -23.4335 - val_accuracy: 0.2472
Epoch 5/20
1796/1796 [==============================] - 3s 2ms/step - loss: -24.1430 - accuracy: 0.1776 - val_loss: -25.9735 - val_accuracy: 0.2472
Epoch 6/20
1796/1796 [==============================] - 3s 2ms/step - loss: -26.4535 - accuracy: 0.1776 - val_loss: -28.0725 - val_accuracy: 0.2472
Epoch 7/20
1796/1796 [==============================] - 3s 2ms/step - loss: -28.4266 - accuracy: 0.1776 - val_loss: -29.9313 - val_accuracy: 0.2472
Epoch 8/20
1796/1796 [==============================] - 3s 2ms/step - loss: -30.1754 - accuracy: 0.1776 - val_loss: -31.6261 - val_accuracy: 0.2472
Epoch 9/20
1796/1796 [==============================] - 3s 2ms/step - loss: -31.8791 - accuracy: 0.1776 - val_loss: -33.3337 - val_accuracy: 0.2472
Epoch 10/20
1796/1796 [==============================] - 4s 2ms/step - loss: -33.5166 - accuracy: 0.1776 - val_loss: -34.9834 - val_accuracy: 0.2472
Epoch 11/20
1796/1796 [==============================] - 3s 2ms/step - loss: -35.1544 - accuracy: 0.1776 - val_loss: -36.5973 - val_accuracy: 0.2472
Epoch 12/20
1796/1796 [==============================] - 3s 2ms/step - loss: -36.7253 - accuracy: 0.1776 - val_loss: -38.2070 - val_accuracy: 0.2472
Epoch 13/20
1796/1796 [==============================] - 3s 2ms/step - loss: -38.3344 - accuracy: 0.1776 - val_loss: -39.8655 - val_accuracy: 0.2472
Epoch 14/20
1796/1796 [==============================] - 3s 2ms/step - loss: -39.9810 - accuracy: 0.1776 - val_loss: -41.5162 - val_accuracy: 0.2472
Epoch 15/20
1796/1796 [==============================] - 3s 1ms/step - loss: -41.6567 - accuracy: 0.1776 - val_loss: -43.2049 - val_accuracy: 0.2472
Epoch 16/20
1796/1796 [==============================] - 3s 1ms/step - loss: -43.2579 - accuracy: 0.1776 - val_loss: -44.8235 - val_accuracy: 0.2472
Epoch 17/20
1796/1796 [==============================] - 3s 1ms/step - loss: -44.9030 - accuracy: 0.1776 - val_loss: -46.4982 - val_accuracy: 0.2472
Epoch 18/20
1796/1796 [==============================] - 2s 1ms/step - loss: -46.5038 - accuracy: 0.1776 - val_loss: -48.0627 - val_accuracy: 0.2472
Epoch 19/20
1796/1796 [==============================] - 3s 1ms/step - loss: -48.0124 - accuracy: 0.1776 - val_loss: -49.5424 - val_accuracy: 0.2472
Epoch 20/20
1796/1796 [==============================] - 2s 1ms/step - loss: -49.5209 - accuracy: 0.1776 - val_loss: -51.1489 - val_accuracy: 0.2472

Evaluation du modèle

score = model_pre_trained.evaluate(X_test, y_test, verbose = 0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
Test loss: -51.148848297866785
Test accuracy: 0.18930958211421967

ptoblèmes: npmbre important de stopwords à rajouter au dictionnaire, doutes sur la fonction dactivation, stemming/lemmatization qui semble peu efficace; axes d'amélioration: explorer les N grammes pouir contextualiser les mots et creer u_n dictionnaire de stopwords customisé pour les deabts ( association d'idées)/


Owner
Pamela Dekas
Adepte de text mining, deep learning and data visualization
Pamela Dekas
Implementation of "A Deep Learning Loss Function based on Auditory Power Compression for Speech Enhancement" by pytorch

This repository is used to suspend the results of our paper "A Deep Learning Loss Function based on Auditory Power Compression for Speech Enhancement"

ScorpioMiku 19 Sep 30, 2022
Code Repository for Liquid Time-Constant Networks (LTCs)

Liquid time-constant Networks (LTCs) [Update] A Pytorch version is added in our sister repository: https://github.com/mlech26l/keras-ncp This is the o

Ramin Hasani 553 Dec 27, 2022
Source Code and data for my paper titled Linguistic Knowledge in Data Augmentation for Natural Language Processing: An Example on Chinese Question Matching

Description The source code and data for my paper titled Linguistic Knowledge in Data Augmentation for Natural Language Processing: An Example on Chin

Zhengxiang Wang 3 Jun 28, 2022
An off-line judger supporting distributed problem repositories

Thaw 中文 | English Thaw is an off-line judger supporting distributed problem repositories. Everyone can use Thaw release problems with license on GitHu

countercurrent_time 2 Jan 09, 2022
The repo contains the code of the ACL2020 paper `Dice Loss for Data-imbalanced NLP Tasks`

Dice Loss for NLP Tasks This repository contains code for Dice Loss for Data-imbalanced NLP Tasks at ACL2020. Setup Install Package Dependencies The c

223 Dec 17, 2022
Code Release for Learning to Adapt to Evolving Domains

EAML Code release for "Learning to Adapt to Evolving Domains" (NeurIPS 2020) Prerequisites PyTorch = 0.4.0 (with suitable CUDA and CuDNN version) tor

23 Dec 07, 2022
[NeurIPS2021] Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks

Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks Code for NeurIPS 2021 Paper "Exploring Architectural Ingredients of A

Hanxun Huang 26 Dec 01, 2022
This is a repository for a No-Code object detection inference API using the OpenVINO. It's supported on both Windows and Linux Operating systems.

OpenVINO Inference API This is a repository for an object detection inference API using the OpenVINO. It's supported on both Windows and Linux Operati

BMW TechOffice MUNICH 68 Nov 24, 2022
OpenMMLab Text Detection, Recognition and Understanding Toolbox

Introduction English | 简体中文 MMOCR is an open-source toolbox based on PyTorch and mmdetection for text detection, text recognition, and the correspondi

OpenMMLab 3k Jan 07, 2023
Highway networks implemented in PyTorch.

PyTorch Highway Networks Highway networks implemented in PyTorch. Just the MNIST example from PyTorch hacked to work with Highway layers. Todo Make th

Conner Vercellino 56 Dec 14, 2022
Driller: augmenting AFL with symbolic execution!

Driller Driller is an implementation of the driller paper. This implementation was built on top of AFL with angr being used as a symbolic tracer. Dril

Shellphish 791 Jan 06, 2023
Safe Bayesian Optimization

SafeOpt - Safe Bayesian Optimization This code implements an adapted version of the safe, Bayesian optimization algorithm, SafeOpt [1], [2]. It also p

Felix Berkenkamp 111 Dec 11, 2022
Stochastic Scene-Aware Motion Prediction

Stochastic Scene-Aware Motion Prediction [Project Page] [Paper] Description This repository contains the training code for MotionNet and GoalNet of SA

Mohamed Hassan 31 Dec 09, 2022
Boosting Adversarial Attacks with Enhanced Momentum (BMVC 2021)

EMI-FGSM This repository contains code to reproduce results from the paper: Boosting Adversarial Attacks with Enhanced Momentum (BMVC 2021) Xiaosen Wa

John Hopcroft Lab at HUST 10 Sep 26, 2022
SimplEx - Explaining Latent Representations with a Corpus of Examples

SimplEx - Explaining Latent Representations with a Corpus of Examples Code Author: Jonathan Crabbé ( Jonathan Crabbé 14 Dec 15, 2022

Pytorch Performace Tuning, WandB, AMP, Multi-GPU, TensorRT, Triton

Plant Pathology 2020 FGVC7 Introduction A deep learning model pipeline for training, experimentaiton and deployment for the Kaggle Competition, Plant

Bharat Giddwani 0 Feb 25, 2022
ManipNet: Neural Manipulation Synthesis with a Hand-Object Spatial Representation - SIGGRAPH 2021

ManipNet: Neural Manipulation Synthesis with a Hand-Object Spatial Representation - SIGGRAPH 2021 Dataset Code Demos Authors: He Zhang, Yuting Ye, Tak

HE ZHANG 194 Dec 06, 2022
Modified fork of Xuebin Qin's U-2-Net Repository. Used for demonstration purposes.

U^2-Net (U square net) Modified version of U2Net used for demonstation purposes. Paper: U^2-Net: Going Deeper with Nested U-Structure for Salient Obje

Shreyas Bhat Kera 13 Aug 28, 2022
Artificial Intelligence playing minesweeper 🤖

AI playing Minesweeper ✨ Minesweeper is a single-player puzzle video game. The objective of the game is to clear a rectangular board containing hidden

Vaibhaw 8 Oct 17, 2022
Using Streamlit to host a multi-page tool with model specs and classification metrics, while also accepting user input values for prediction.

Predicitng_viability Using Streamlit to host a multi-page tool with model specs and classification metrics, while also accepting user input values for

Gopalika Sharma 1 Nov 08, 2021