Poisson Surface Reconstruction for LiDAR Odometry and Mapping

Overview

Poisson Surface Reconstruction for LiDAR Odometry and Mapping

Surfels TSDF Our Approach
suma tsdf puma

Table: Qualitative comparison between the different mapping techniques for sequence 00 of the KITTI odometry benchmark.

This repository implements the algorithms described in our paper Poisson Surface Reconstruction for LiDAR Odometry and Mapping.

This is a LiDAR Odometry and Mapping pipeline that uses the Poisson Surface Reconstruction algorithm to build the map as a triangular mesh.

We propose a novel frame-to-mesh registration algorithm where we compute the poses of the vehicle by estimating the 6 degrees of freedom of the LiDAR. To achieve this, we project each scan to the triangular mesh by computing the ray-to-triangle intersections between each point in the input scan and the map mesh. We accelerate this ray-casting technique using a python wrapper of the Intel® Embree library.

The main application of our research is intended for autonomous driving vehicles.

Table of Contents

Running the code

NOTE: All the commands assume you are working on this shared workspace, therefore, first cd apps/ before running anything.

Requirements: Install docker

If you plan to use our docker container you only need to install docker and docker-compose.

If you don't want to use docker and install puma locally you might want to visit the Installation Instructions

Datasets

First, you need to indicate where are all your datasets, for doing so just:

export DATASETS=<full-path-to-datasets-location>

This env variable is shared between the docker container and your host system(in a read-only fashion).

So far we've only tested our approach on the KITTI Odometry benchmark dataset and the Mai city dataset. Both datasets are using a 64-beam Velodyne like LiDAR.

Building the apss docker container

This container is in charge of running the apss and needs to be built with your user and group id (so you can share files). Building this container is straightforward thanks to the provided Makefile:

make

If you want' to inspect the image you can get an interactive shell by running make run, but it's not mandatory.

Converting from .bin to .ply

All our apps use the PLY which is also binary but has much better support than just raw binary files. Therefore, you will need to convert all your data before running any of the apps available in this repo.

docker-compose run --rm apps bash -c '\
    ./data_conversion/bin2ply.py \
    --dataset $DATASETS/kitti-odometry/dataset/ \
    --out_dir ./data/kitti-odometry/ply/ \
    --sequence 07
    '

Please change the --dataset option to point to where you have the KITTI dataset.

Running the puma pipeline

Go grab a coffee/mate, this will take some time...

docker-compose run --rm apps bash -c '\
    ./pipelines/slam/puma_pipeline.py  \
    --dataset ./data/kitti-odometry/ply \
    --sequence 07 \
    --n_scans 40
    '

Inspecting the results

The pipelines/slam/puma_pipeline.py will generate 3 files on your host sytem:

results
├── kitti-odometry_07_depth_10_cropped_p2l_raycasting.ply # <- Generated Model
├── kitti-odometry_07_depth_10_cropped_p2l_raycasting.txt # <- Estimated poses
└── kitti-odometry_07_depth_10_cropped_p2l_raycasting.yml # <- Configuration

You can open the .ply with Open3D, Meshlab, CloudCompare, or the tool you like the most.

Where to go next

If you already installed puma then it's time to look for the standalone apps. These apps are executable command line interfaces (CLI) to interact with the core puma code:

├── data_conversion
│   ├── bin2bag.py
│   ├── kitti2ply.py
│   ├── ply2bin.py
│   └── ros2ply.py
├── pipelines
│   ├── mapping
│   │   ├── build_gt_cloud.py
│   │   ├── build_gt_mesh_incremental.py
│   │   └── build_gt_mesh.py
│   ├── odometry
│   │   ├── icp_frame_2_frame.py
│   │   ├── icp_frame_2_map.py
│   │   └── icp_frame_2_mesh.py
│   └── slam
│       └── puma_pipeline.py
└── run_poisson.py

All the apps should have an usable command line interface, so if you need help you only need to pass the --help flag to the app you wish to use. For example let's see the help message of the data conversion app bin2ply.py used above:

Usage: bin2ply.py [OPTIONS]

  Utility script to convert from the binary form found in the KITTI odometry
  dataset to .ply files. The intensity value for each measurement is encoded
  in the color channel of the output PointCloud.

  If a given sequence it's specified then it assumes you have a clean copy
  of the KITTI odometry benchmark, because it uses pykitti. If you only have
  a folder with just .bin files the script will most likely fail.

  If no sequence is specified then it blindly reads all the *.bin file in
  the specified dataset directory

Options:
  -d, --dataset PATH   Location of the KITTI dataset  [default:
                       /home/ivizzo/data/kitti-odometry/dataset/]

  -o, --out_dir PATH   Where to store the results  [default:
                       /home/ivizzo/data/kitti-odometry/ply/]

  -s, --sequence TEXT  Sequence number
  --use_intensity      Encode the intensity value in the color channel
  --help               Show this message and exit.

Citation

If you use this library for any academic work, please cite the original paper.

@inproceedings{vizzo2021icra,
author    = {I. Vizzo and X. Chen and N. Chebrolu and J. Behley and C. Stachniss},
title     = {{Poisson Surface Reconstruction for LiDAR Odometry and Mapping}},
booktitle = {Proc.~of the IEEE Intl.~Conf.~on Robotics \& Automation (ICRA)},
codeurl   = {https://github.com/PRBonn/puma/},
year      = 2021,
}
Owner
Photogrammetry & Robotics Bonn
Photogrammetry & Robotics Lab at the University of Bonn
Photogrammetry & Robotics Bonn
Object recognition using Azure Custom Vision AI and Azure Functions

Step by Step on how to create an object recognition model using Custom Vision, export the model and run the model in an Azure Function

El Bruno 11 Jul 08, 2022
This is the official code for the paper "Ad2Attack: Adaptive Adversarial Attack for Real-Time UAV Tracking".

Ad^2Attack:Adaptive Adversarial Attack on Real-Time UAV Tracking Demo video 📹 Our video on bilibili demonstrates the test results of Ad^2Attack on se

Intelligent Vision for Robotics in Complex Environment 10 Nov 07, 2022
Repository for "Toward Practical Monocular Indoor Depth Estimation" (CVPR 2022)

Toward Practical Monocular Indoor Depth Estimation Cho-Ying Wu, Jialiang Wang, Michael Hall, Ulrich Neumann, Shuochen Su [arXiv] [project site] DistDe

Meta Research 122 Dec 13, 2022
DL course co-developed by YSDA, HSE and Skoltech

Deep learning course This repo supplements Deep Learning course taught at YSDA and HSE @fall'21. For previous iteration visit the spring21 branch. Lec

Yandex School of Data Analysis 1.3k Dec 30, 2022
[PyTorch] Official implementation of CVPR2021 paper "PointDSC: Robust Point Cloud Registration using Deep Spatial Consistency". https://arxiv.org/abs/2103.05465

PointDSC repository PyTorch implementation of PointDSC for CVPR'2021 paper "PointDSC: Robust Point Cloud Registration using Deep Spatial Consistency",

153 Dec 14, 2022
Pytorch Implementation for (STANet+ and STANet)

Pytorch Implementation for (STANet+ and STANet) V2-Weakly Supervised Visual-Auditory Saliency Detection with Multigranularity Perception (arxiv), pdf:

GuotaoWang 14 Nov 29, 2022
Object tracking using YOLO and a tracker(KCF, MOSSE, CSRT) in openCV

Object tracking using YOLO and a tracker(KCF, MOSSE, CSRT) in openCV File YOLOv3 weight can be downloaded

Ngoc Quyen Ngo 2 Mar 27, 2022
This repository accompanies our paper “Do Prompt-Based Models Really Understand the Meaning of Their Prompts?”

This repository accompanies our paper “Do Prompt-Based Models Really Understand the Meaning of Their Prompts?” Usage To replicate our results in Secti

Albert Webson 64 Dec 11, 2022
A torch implementation of "Pixel-Level Domain Transfer"

Pixel Level Domain Transfer A torch implementation of "Pixel-Level Domain Transfer". based on dcgan.torch. Dataset The dataset used is "LookBook", fro

Fei Xia 260 Sep 02, 2022
The MLOps platform for innovators 🚀

​ DS2.ai is an integrated AI operation solution that supports all stages from custom AI development to deployment. It is an AI-specialized platform service that collects data, builds a training datas

9 Jan 03, 2023
UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation

UnivNet UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation. Training python train.py --c

Rishikesh (ऋषिकेश) 55 Dec 26, 2022
Convert human motion from video to .bvh

video_to_bvh Convert human motion from video to .bvh with Google Colab Usage 1. Open video_to_bvh.ipynb in Google Colab Go to https://colab.research.g

Dene 306 Dec 10, 2022
Open source code for Paper "A Co-Interactive Transformer for Joint Slot Filling and Intent Detection"

A Co-Interactive Transformer for Joint Slot Filling and Intent Detection This repository contains the PyTorch implementation of the paper: A Co-Intera

67 Dec 05, 2022
Evolving neural network parameters in JAX.

Evolving Neural Networks in JAX This repository holds code displaying techniques for applying evolutionary network training strategies in JAX. Each sc

Trevor Thackston 6 Feb 12, 2022
Data pipelines for both TensorFlow and PyTorch!

rapidnlp-datasets Data pipelines for both TensorFlow and PyTorch ! If you want to load public datasets, try: tensorflow/datasets huggingface/datasets

1 Dec 08, 2021
Official implementation of "StyleCariGAN: Caricature Generation via StyleGAN Feature Map Modulation" (SIGGRAPH 2021)

StyleCariGAN in PyTorch Official implementation of StyleCariGAN:Caricature Generation via StyleGAN Feature Map Modulation in PyTorch Requirements PyTo

PeterZhouSZ 49 Oct 31, 2022
Python with OpenCV - MediaPip Framework Hand Detection

Python HandDetection Python with OpenCV - MediaPip Framework Hand Detection Explore the docs » Contact Me About The Project It is a Computer vision pa

2 Jan 07, 2022
基于Flask开发后端、VUE开发前端框架,在WEB端部署YOLOv5目标检测模型

基于Flask开发后端、VUE开发前端框架,在WEB端部署YOLOv5目标检测模型

37 Jan 01, 2023
Tool for live presentations using manim

manim-presentation Tool for live presentations using manim Install pip install manim-presentation opencv-python Usage Use the class Slide as your sce

Federico Galatolo 146 Jan 06, 2023
Official Datasets and Implementation from our Paper "Video Class Agnostic Segmentation in Autonomous Driving".

Video Class Agnostic Segmentation [Method Paper] [Benchmark Paper] [Project] [Demo] Official Datasets and Implementation from our Paper "Video Class A

Mennatullah Siam 26 Oct 24, 2022