Wake: Context-Sensitive Automatic Keyword Extraction Using Word2vec

Related tags

Text Data & NLPWake
Overview

Wake

Wake: Context-Sensitive Automatic Keyword Extraction Using Word2vec

Abstract

استخراج خودکار کلمات کلیدی متون کوتاه فارسی با استفاده از word2vec

با رشد روز افزون اسناد و متون الکترونیکی به زبان فارسی، به کارگیری روش­هایی سریع و ارزان برای دسترسی بـه متـون مورد نظر از میان مجموعه وسیع این مستندات، اهمیت بیشتری می­یابد. برای رسیدن به این هدف، استخراج کلمات کلیدی که بیانگر مضمون اصلی متن باشند، روشی بسیار مؤثر است. تعداد تکرار یک کلمه در متن نمی­تواند نشان­دهنده­ اهمیت یک کلمه و کلیدی بودن آن باشد. همچنین در اکثر روش­های استخراج کلمات کلیدی مفهوم و معنای متن نادیده گرفته می­شوند. از طرفی دیگر بدون ساختار بودن متون جدید در اخبار و اسناد الکترونیکی، استخراج این کلمات را مشکل می­سازد. در این مقاله روشی بدون نظارت و خودکار برای استخراج این کلمات در زبان فارسی که دارای ساختار مناسبی نمی­باشد، پیشنهاد شده است که نه تنها احتمال رخ دادن کلمه در متن و تعداد تکرار آن را در نظر می­گیرد، بلکه با آموزش مدل word2vec روی متن، مفهوم و معنای متن را نیز درک می­کند. در روش پیشنهادی که روشی ترکیبی از دو مدل آماری و یادگیری ماشین می­باشد، پس از آموزش word2vec روی متن، کلماتی که با سایر کلمات دارای فاصله­ کمی بوده استخراج شده و سپس با استفاده از هم­رخدادی و فرکانس رابطه­ای آماری برای محاسبه امتیاز پیشنهاد شده است. درنهایت با استفاده از حدآستانه کلمات با امتیاز بالاتر به‌عنوان کلمه کلیدی در نظر گرفته می­شوند. ارزیابی­­ها بیانگر کارایی روش با معیار F برابر 53.92% و با 11% افزایش نسبت به دیگر روش‌های استخراج کلمات کلیدی می­باشد.

Run

This project requires a data set as the context and target text (which is short text: between 500 and 1000 tokens).

In the code the name of the Context text is cntText and the name of target text is shortTxt. The main part of the program consists of two lines of code:

wake = Wake.wake(cntTxt , use_PreTrain_Model, word2vec_param, model_add) key = wake.keyword_EXT(shortTxt,numKey)

word2vec_param is a tuple contains parameters for traning Word2vec: (window_size, min_count) use_PreTrain_Model is a binary variable that indicates whether the pre-trained model is being used: if use_PreTrain_Model=1 -> using pretrain Model model_add is the address of pretrain model that can be empty

Example

In this project, text keywords are automatically extracted based on its context. For example for the following input text:

وزرای امور خارجه آمریکا و عربستان در پایان سفر مایک پامپئو به ریاض در کنفرانسی مطبوعاتی تاکید کردند که محور گفت وگوهایشان ایران و `` مقابله با سیاست های ایران در منطقه '' بوده است . به گزارش ایسنا ، به نقل از شبکه اسکای نیوز عربی ، مایک پامپئو ، وزیر خارجه جدید آمریکا در این کنفرانس مطبوعاتی گفت : ما شراکت ویژه ای با عربستان داریم که این شراکت و همکاری در حال گسترش است . دیدارهای بسیار خوبی با همتای عربستانی خود و نیز پادشاه و دیگر مسئولان این کشور داشتم . رئیس جمهور ترامپ بسیار خوشحال می شود میزبان پادشاه عربستان و مسئولان اقتصادی این کشور در کاخ سفید باشد . وزیر امور خارجه آمریکا ادامه داد : امنیت عربستان یک اولویت اصلی برای ایالات متحده است و ما با عربستان کار می کنیم تا امنیت در این کشور ارتقا یابد . پامپئو در بخش دیگری از سخنانش به مساله ایران پرداخت و مدعی شد : ایران باعث ایجاد ناامنی و بی ثباتی در منطقه و بزرگترین حامی تروریسم در جهان است . این کشور با شبه نظامیان وابسته به خود در سوریه ، عراق و یمن و نیز با حملات سایبری به ایجاد ناامنی دست می زند . باید بگویم برخلاف دولت قبلی ایالات متحده ما دست بسته نمی نشینیم . اطمینان می دهم ایران هیچگاه به سلاح اتمی دست نخواهد یافت . او ادامه داد : درباره توافق هسته ای با ایران نیز باید بگویم رفتار ایران بعد از این توافق بدتر شده است . همانگونه که رئیس جمهور ترامپ گفته است این توافق باید اصلاح شود و اگر اصلاح نشود و یا قابل اصلاح نباشد ما از آن خارج می شویم . پامپئو ادامه داد : باید جلوی اقدامات ایران از جمله کمک به حوثی ها گرفته شود . حوثی ها با پرتاب موشک و نیز به خطر انداختن امنیت دریانوردی ، عربستان و امنیت منطقه را تهدید می کنند . ما به عربستان در مقابله با این تهدیدات کمک خواهیم کرد . همزمان نیز مذاکرات با نماینده سازمان ملل در یمن را پی می گیریم تا اوضاع در یمن که باعث ظهور و رشد القاعده شده ، وخیم تر نشود . خطر علیه منطقه یقینا تهدید علیه ایالات متحده است . وزیر امور خارجه آمریکا به سفر ترامپ به عربستان نیز اشاره کرد و گفت : سفر ترامپ به منطقه یک سفر تاریخی بود که در آن یک سازمان مبارزه با تروریسم تشکیل شد . ما متعهد به پیگیری اقداماتمان در این راستا هستیم البته خاورمیانه و شرکایمان نباید منتظر آمریکا بمانند و اطمینان داریم که عربستان در مبارزه با تروریسم پیش قراول دیگر کشورها خواهد بود . مایک پامپئو در پایان سخنان خود با ستایش از اقدامات اصلاحی ولیعهد عربستان ، به چشم انداز 2030 این کشور اشاره کرد و گفت که ایالات متحده آمریکا حامی برنامه های محمد بن سلمان ، ولیعهد عربستان است و اصلاحات ایجاد شده در این کشور به ویژه در زمینه حقوق زنان را ستایش می کند . عادل الجبیر ، وزیر امور خارجه عربستان نیز به عنوان میزبان همتای آمریکایی خود در آغاز این کنفرانس مطبوعاتی گفت که با پامپئو توافق کرده تا مانع `` خواسته های روزافزون ایران در منطقه '' شود . وی گفت : دو کشور بر سر مبارزه با `` اقدامات بی ثبات کننده ایران '' در منطقه توافق دارند . ما از سیاست های آمریکا در قبال ایران به طور کامل حمایت می کنیم که از جمله آن سیاست های ایالات متحده در قبال برنامه هسته ای ایران است .

The 10 keywords extracted by the model are:

('ایران', 4.05292034373375)

('عربستان', 4.193905604785485)

('کشور', 4.7680901504699245)

('آمریکا', 4.941453550088568)

('منطقه', 4.949306749139798)

('ایالات', 5.365563238340798)

('متحده', 5.444792335101005)

('توافق', 5.479569006927752)

('خارجه', 5.616200457615028)

('ترامپ', 5.829934633246103)

Note

In this model, lower score means higher priority.

Reference:

Implemented article

Owner
Omid Hajipoor
Ph.D. Student, NLP Engineer
Omid Hajipoor
Use fastai-v2 with HuggingFace's pretrained transformers

FastHugs Use fastai v2 with HuggingFace's pretrained transformers, see the notebooks below depending on your task: Text classification: fasthugs_seq_c

Morgan McGuire 111 Nov 16, 2022
Negative sampling for solving the unlabeled entity problem in NER. ICLR-2021 paper: Empirical Analysis of Unlabeled Entity Problem in Named Entity Recognition.

Negative Sampling for NER Unlabeled entity problem is prevalent in many NER scenarios (e.g., weakly supervised NER). Our paper in ICLR-2021 proposes u

Yangming Li 128 Dec 29, 2022
Searching keywords in PDF file folders

keyword_searching Steps to use this Python scripts: (1)Paste this script into the file folder containing the PDF files you need to search from; (2)Thi

1 Nov 08, 2021
基于Transformer的单模型、多尺度的VAE模型

UniVAE 基于Transformer的单模型、多尺度的VAE模型 介绍 https://kexue.fm/archives/8475 依赖 需要大于0.10.6版本的bert4keras(当前还没有推到pypi上,可以直接从GitHub上clone最新版)。 引用 @misc{univae,

苏剑林(Jianlin Su) 49 Aug 24, 2022
🐍💯pySBD (Python Sentence Boundary Disambiguation) is a rule-based sentence boundary detection that works out-of-the-box.

pySBD: Python Sentence Boundary Disambiguation (SBD) pySBD - python Sentence Boundary Disambiguation (SBD) - is a rule-based sentence boundary detecti

Nipun Sadvilkar 549 Jan 06, 2023
Code to reprudece NeurIPS paper: Accelerated Sparse Neural Training: A Provable and Efficient Method to Find N:M Transposable Masks

Accelerated Sparse Neural Training: A Provable and Efficient Method to FindN:M Transposable Masks Recently, researchers proposed pruning deep neural n

itay hubara 4 Feb 23, 2022
Code for Emergent Translation in Multi-Agent Communication

Emergent Translation in Multi-Agent Communication PyTorch implementation of the models described in the paper Emergent Translation in Multi-Agent Comm

Facebook Research 75 Jul 15, 2022
Contains links to publicly available datasets for modeling health outcomes using speech and language.

speech-nlp-datasets Contains links to publicly available datasets for modeling various health outcomes using speech and language. Speech-based Corpora

Tuka Alhanai 77 Dec 07, 2022
Neural network models for joint POS tagging and dependency parsing (CoNLL 2017-2018)

Neural Network Models for Joint POS Tagging and Dependency Parsing Implementations of joint models for POS tagging and dependency parsing, as describe

Dat Quoc Nguyen 152 Sep 02, 2022
This repo contains simple to use, pretrained/training-less models for speaker diarization.

PyDiar This repo contains simple to use, pretrained/training-less models for speaker diarization. Supported Models Binary Key Speaker Modeling Based o

12 Jan 20, 2022
NLTK Source

Natural Language Toolkit (NLTK) NLTK -- the Natural Language Toolkit -- is a suite of open source Python modules, data sets, and tutorials supporting

Natural Language Toolkit 11.4k Jan 04, 2023
Code for Text Prior Guided Scene Text Image Super-Resolution

Code for Text Prior Guided Scene Text Image Super-Resolution

82 Dec 26, 2022
Full Spectrum Bioinformatics - a free online text designed to introduce key topics in Bioinformatics using the Python

Full Spectrum Bioinformatics is a free online text designed to introduce key topics in Bioinformatics using the Python programming language. The text is written in interactive Jupyter Notebooks, whic

Jesse Zaneveld 33 Dec 28, 2022
NLP-based analysis of poor Chinese movie reviews on Douban

douban_embedding 豆瓣中文影评差评分析 1. NLP NLP(Natural Language Processing)是指自然语言处理,他的目的是让计算机可以听懂人话。 下面是我将2万条豆瓣影评训练之后,随意输入一段新影评交给神经网络,最终AI推断出的结果。 "很好,演技不错

3 Apr 15, 2022
jiant is an NLP toolkit

jiant is an NLP toolkit The multitask and transfer learning toolkit for natural language processing research Why should I use jiant? jiant supports mu

ML² AT CILVR 1.5k Jan 04, 2023
Sentiment Classification using WSD, Maximum Entropy & Naive Bayes Classifiers

Sentiment Classification using WSD, Maximum Entropy & Naive Bayes Classifiers

Pulkit Kathuria 173 Jan 04, 2023
Easy to use, state-of-the-art Neural Machine Translation for 100+ languages

EasyNMT - Easy to use, state-of-the-art Neural Machine Translation This package provides easy to use, state-of-the-art machine translation for more th

Ubiquitous Knowledge Processing Lab 748 Jan 06, 2023
Python library for Serbian Natural language processing (NLP)

SrbAI - Python biblioteka za procesiranje srpskog jezika SrbAI je projekat prikupljanja algoritama i modela za procesiranje srpskog jezika u jedinstve

Serbian AI Society 3 Nov 22, 2022
Python code for ICLR 2022 spotlight paper EViT: Expediting Vision Transformers via Token Reorganizations

Expediting Vision Transformers via Token Reorganizations This repository contain

Youwei Liang 101 Dec 26, 2022
TextAttack 🐙 is a Python framework for adversarial attacks, data augmentation, and model training in NLP

TextAttack 🐙 Generating adversarial examples for NLP models [TextAttack Documentation on ReadTheDocs] About • Setup • Usage • Design About TextAttack

QData 2.2k Jan 03, 2023