SceneCollisionNet This repo contains the code for "Object Rearrangement Using Learned Implicit Collision Functions", an ICRA 2021 paper. For more info

Overview

SceneCollisionNet

This repo contains the code for "Object Rearrangement Using Learned Implicit Collision Functions", an ICRA 2021 paper. For more information, please visit the project website.

License

This repo is released under NVIDIA source code license. For business inquiries, please contact [email protected]. For press and other inquiries, please contact Hector Marinez at [email protected]

Install and Setup

Clone and install the repo (we recommend a virtual environment, especially if training or benchmarking, to avoid dependency conflicts):

git clone --recursive https://github.com/mjd3/SceneCollisionNet.git
cd SceneCollisionNet
pip install -e .

These commands install the minimum dependencies needed for generating a mesh dataset and then training/benchmarking using Docker. If you instead wish to train or benchmark without using Docker, please first install an appropriate version of PyTorch and corresponding version of PyTorch Scatter for your system. Then, execute these commands:

git clone --recursive https://github.com/mjd3/SceneCollisionNet.git
cd SceneCollisionNet
pip install -e .[train]

If benchmarking, replace train in the last command with bench.

To rollout the object rearrangement MPPI policy in a simulated tabletop environment, first download Isaac Gym and place it in the extern folder within this repo. Next, follow the previous installation instructions for training, but replace the train option with policy.

To download the pretrained weights for benchmarking or policy rollout, run bash scripts/download_weights.sh.

Generating a Mesh Dataset

To save time during training/benchmarking, meshes are preprocessed and mesh stable poses are calculated offline. SceneCollisionNet was trained using the ACRONYM dataset. To use this dataset for training or benchmarking, download the ShapeNetSem meshes here (note: you must first register for an account) and the ACRONYM grasps here. Next, build Manifold (an external library included as a submodule):

./scripts/install_manifold.sh

Then, use the following script to generate a preprocessed version of the ACRONYM dataset:

python tools/generate_acronym_dataset.py /path/to/shapenetsem/meshes /path/to/acronym datasets/shapenet

If you have your own set of meshes, run:

python tools/generate_mesh_dataset.py /path/to/meshes datasets/your_dataset_name

Note that this dataset will not include grasp data, which is not needed for training or benchmarking SceneCollisionNet, but is be used for rolling out the MPPI policy.

Training/Benchmarking with Docker

First, install Docker and nvidia-docker2 following the instructions here. Pull the SceneCollisionNet docker image from DockerHub (tag scenecollisionnet) or build locally using the provided Dockerfile (docker build -t scenecollisionnet .). Then, use the appropriate configuration .yaml file in cfg to set training or benchmarking parameters (note that cfg file paths are relative to the Docker container, not the local machine) and run one of the commands below (replacing paths with your local paths as needed; -v requires absolute paths).

Train a SceneCollisionNet

Edit cfg/train_scenecollisionnet.yaml, then run:

docker run --gpus all --rm -it -v /path/to/dataset:/dataset:ro -v /path/to/models:/models:rw -v /path/to/cfg:/cfg:ro scenecollisionnet /SceneCollisionNet/scripts/train_scenecollisionnet_docker.sh

Train a RobotCollisionNet

Edit cfg/train_robotcollisionnet.yaml, then run:

docker run --gpus all --rm -it -v /path/to/models:/models:rw -v /path/to/cfg:/cfg:ro scenecollisionnet /SceneCollisionNet/scripts/train_robotcollisionnet_docker.sh

Benchmark a SceneCollisionNet

Edit cfg/benchmark_scenecollisionnet.yaml, then run:

docker run --gpus all --rm -it -v /path/to/dataset:/dataset:ro -v /path/to/models:/models:ro -v /path/to/cfg:/cfg:ro -v /path/to/benchmark_results:/benchmark:rw scenecollisionnet /SceneCollisionNet/scripts/benchmark_scenecollisionnet_docker.sh

Benchmark a RobotCollisionNet

Edit cfg/benchmark_robotcollisionnet.yaml, then run:

docker run --gpus all --rm -it -v /path/to/models:/models:rw -v /path/to/cfg:/cfg:ro -v /path/to/benchmark_results:/benchmark:rw scenecollisionnet /SceneCollisionNet/scripts/train_robotcollisionnet_docker.sh

Loss Plots

To get loss plots while training, run:

docker exec -d <container_name> python3 tools/loss_plots.py /models/<model_name>/log.csv

Benchmark FCL or SDF Baselines

Edit cfg/benchmark_baseline.yaml, then run:

docker run --gpus all --rm -it -v /path/to/dataset:/dataset:ro -v /path/to/benchmark_results:/benchmark:rw -v /path/to/cfg:/cfg:ro scenecollisionnet /SceneCollisionNet/scripts/benchmark_baseline_docker.sh

Training/Benchmarking without Docker

First, install system dependencies. The system dependencies listed assume an Ubuntu 18.04 install with NVIDIA drivers >= 450.80.02 and CUDA 10.2. You can adjust the dependencies accordingly for different driver/CUDA versions. Note that the NVIDIA drivers come packaged with EGL, which is used during training and benchmarking for headless rendering on the GPU.

System Dependencies

See Dockerfile for a full list. For training/benchmarking, you will need:

python3-dev
python3-pip
ninja-build
libcudnn8=8.1.1.33-1+cuda10.2
libcudnn8-dev=8.1.1.33-1+cuda10.2
libsm6
libxext6
libxrender-dev
freeglut3-dev
liboctomap-dev
libfcl-dev
gifsicle
libfreetype6-dev
libpng-dev

Python Dependencies

Follow the instructions above to install the necessary dependencies for your use case (either the train, bench, or policy options).

Train a SceneCollisionNet

Edit cfg/train_scenecollisionnet.yaml, then run:

PYOPENGL_PLATFORM=egl python tools/train_scenecollisionnet.py

Train a RobotCollisionNet

Edit cfg/train_robotcollisionnet.yaml, then run:

python tools/train_robotcollisionnet.py

Benchmark a SceneCollisionNet

Edit cfg/benchmark_scenecollisionnet.yaml, then run:

PYOPENGL_PLATFORM=egl python tools/benchmark_scenecollisionnet.py

Benchmark a RobotCollisionNet

Edit cfg/benchmark_robotcollisionnet.yaml, then run:

python tools/benchmark_robotcollisionnet.py

Benchmark FCL or SDF Baselines

Edit cfg/benchmark_baseline.yaml, then run:

PYOPENGL_PLATFORM=egl python tools/benchmark_baseline.py

Policy Rollout

To view a rearrangement MPPI policy rollout in a simulated Isaac Gym tabletop environment, run the following command (note that this requires a local machine with an available GPU and display):

python tools/rollout_policy.py --self-coll-nn weights/self_coll_nn --scene-coll-nn weights/scene_coll_nn --control-frequency 1

There are many possible options for this command that can be viewed using the --help command line argument and set with the appropriate argument. If you get RuntimeError: CUDA out of memory, try reducing the horizon (--mppi-horizon, default 40), number of trajectories (--mppi-num-rollouts, default 200) or collision steps (--mppi-collision-steps, default 10). Note that this may affect policy performance.

Citation

If you use this code in your own research, please consider citing:

@inproceedings{danielczuk2021object,
  title={Object Rearrangement Using Learned Implicit Collision Functions},
  author={Danielczuk, Michael and Mousavian, Arsalan and Eppner, Clemens and Fox, Dieter},
  booktitle={Proc. IEEE Int. Conf. Robotics and Automation (ICRA)},
  year={2021}
}
Owner
NVIDIA Research Projects
NVIDIA Research Projects
Reference Code for AAAI-20 paper "Multi-Stage Self-Supervised Learning for Graph Convolutional Networks on Graphs with Few Labels"

Reference Code for AAAI-20 paper "Multi-Stage Self-Supervised Learning for Graph Convolutional Networks on Graphs with Few Labels" Please refer to htt

Ke Sun 1 Feb 14, 2022
A python script based on opencv and paddleocr, which can automatically pick up tasks, make cookies, and receive rewards in the Destiny 2 Dawning Oven

A python script based on opencv and paddleocr, which can automatically pick up tasks, make cookies, and receive rewards in the Destiny 2 Dawning Oven

1 Dec 22, 2021
nofacedb/faceprocessor is a face recognition engine for NoFaceDB program complex.

faceprocessor nofacedb/faceprocessor is a face recognition engine for NoFaceDB program complex. Tech faceprocessor uses a number of open source projec

NoFaceDB 3 Sep 06, 2021
TextBoxes re-implement using tensorflow

TextBoxes-TensorFlow TextBoxes re-implementation using tensorflow. This project is greatly inspired by slim project And many functions are modified ba

Gu Xiaodong 44 Dec 29, 2022
A pure pytorch implemented ocr project including text detection and recognition

ocr.pytorch A pure pytorch implemented ocr project. Text detection is based CTPN and text recognition is based CRNN. More detection and recognition me

coura 444 Dec 30, 2022
The papers published in top-tier AI conferences in recent years.

AI-conference-papers The papers published in top-tier AI conferences in recent years. Paper table AAAI ICLR CVPR ICML ICCV ECCV NIPS 2019 ✔️ ✔️ ✔️ ✔️

Jinbae Park 6 Dec 09, 2022
Code for CVPR'2022 paper ✨ "Predict, Prevent, and Evaluate: Disentangled Text-Driven Image Manipulation Empowered by Pre-Trained Vision-Language Model"

PPE ✨ Repository for our CVPR'2022 paper: Predict, Prevent, and Evaluate: Disentangled Text-Driven Image Manipulation Empowered by Pre-Trained Vision-

Zipeng Xu 34 Nov 28, 2022
Text recognition (optical character recognition) with deep learning methods.

What Is Wrong With Scene Text Recognition Model Comparisons? Dataset and Model Analysis | paper | training and evaluation data | failure cases and cle

Clova AI Research 3.2k Jan 04, 2023
Machine Leaning applied to denoise images to improve OCR Accuracy

Machine Learning to Denoise Images for Better OCR Accuracy This project is an adaptation of this tutorial and used only for learning purposes: https:/

Antonio Bri Pérez 2 Nov 16, 2022
Assignment work with webcam

work with webcam : Press key 1 to use emojy on your face Press key 2 to use lip and eye on your face Press key 3 to checkered your face Press key 4 to

Hanane Kheirandish 2 May 31, 2022
Provides OCR (Optical Character Recognition) services through web applications

OCR4all As suggested by the name one of the main goals of OCR4all is to allow basically any given user to independently perform OCR on a wide variety

174 Dec 31, 2022
Text layer for bio-image annotation.

napari-text-layer Napari text layer for bio-image annotation. Installation You can install using pip: pip install napari-text-layer Keybindings and m

6 Sep 29, 2022
Controlling Volume by Hand Gestures

This program allows the user to control the volume of their device with specific hand gestures involving their thumb and index finger!

Riddhi Bajaj 1 Nov 11, 2021
Handwritten_Text_Recognition

Deep Learning framework for Line-level Handwritten Text Recognition Short presentation of our project Introduction Installation 2.a Install conda envi

24 Jul 15, 2022
This Repository contain Opencv Projects in python

Python-Opencv OpenCV OpenCV (Open Source Computer Vision Library) is an open source computer vision and machine learning software library. OpenCV was

Yash Sakre 2 Nov 06, 2021
TextBoxes: A Fast Text Detector with a Single Deep Neural Network https://github.com/MhLiao/TextBoxes 基于SSD改进的文本检测算法,textBoxes_note记录了之前整理的笔记。

TextBoxes: A Fast Text Detector with a Single Deep Neural Network Introduction This paper presents an end-to-end trainable fast scene text detector, n

zhangjing1 24 Apr 28, 2022
A semi-automatic open-source tool for Layout Analysis and Region EXtraction on early printed books.

LAREX LAREX is a semi-automatic open-source tool for layout analysis on early printed books. It uses a rule based connected components approach which

162 Jan 05, 2023
Textboxes_plusplus implementation with Tensorflow (python)

TextBoxes++-TensorFlow TextBoxes++ re-implementation using tensorflow. This project is greatly inspired by slim project And many functions are modifie

81 Dec 07, 2022
Super Mario Game With Python

Super_Mario Hello all this is a simple python program which tries to use our body as a controller for the super mario game Here I have used media pipe

Adarsh Badagala 219 Nov 25, 2022
Total Text Dataset. It consists of 1555 images with more than 3 different text orientations: Horizontal, Multi-Oriented, and Curved, one of a kind.

Total-Text-Dataset (Official site) Updated on April 29, 2020 (Detection leaderboard is updated - highlighted E2E methods. Thank you shine-lcy.) Update

Chee Seng Chan 671 Dec 27, 2022