A best practice for tensorflow project template architecture.

Overview

Tensorflow Project Template

A simple and well designed structure is essential for any Deep Learning project, so after a lot of practice and contributing in tensorflow projects here's a tensorflow project template that combines simplcity, best practice for folder structure and good OOP design. The main idea is that there's much stuff you do every time you start your tensorflow project, so wrapping all this shared stuff will help you to change just the core idea every time you start a new tensorflow project.

So, here's a simple tensorflow template that help you get into your main project faster and just focus on your core (Model, Training, ...etc)

Table Of Contents

In a Nutshell

In a nutshell here's how to use this template, so for example assume you want to implement VGG model so you should do the following:

  • In models folder create a class named VGG that inherit the "base_model" class
    class VGGModel(BaseModel):
        def __init__(self, config):
            super(VGGModel, self).__init__(config)
            #call the build_model and init_saver functions.
            self.build_model() 
            self.init_saver() 
  • Override these two functions "build_model" where you implement the vgg model, and "init_saver" where you define a tensorflow saver, then call them in the initalizer.
     def build_model(self):
        # here you build the tensorflow graph of any model you want and also define the loss.
        pass
            
     def init_saver(self):
        # here you initalize the tensorflow saver that will be used in saving the checkpoints.
        self.saver = tf.train.Saver(max_to_keep=self.config.max_to_keep)
  • In trainers folder create a VGG trainer that inherit from "base_train" class
    class VGGTrainer(BaseTrain):
        def __init__(self, sess, model, data, config, logger):
            super(VGGTrainer, self).__init__(sess, model, data, config, logger)
  • Override these two functions "train_step", "train_epoch" where you write the logic of the training process
    def train_epoch(self):
        """
       implement the logic of epoch:
       -loop on the number of iterations in the config and call the train step
       -add any summaries you want using the summary
        """
        pass

    def train_step(self):
        """
       implement the logic of the train step
       - run the tensorflow session
       - return any metrics you need to summarize
       """
        pass
  • In main file, you create the session and instances of the following objects "Model", "Logger", "Data_Generator", "Trainer", and config
    sess = tf.Session()
    # create instance of the model you want
    model = VGGModel(config)
    # create your data generator
    data = DataGenerator(config)
    # create tensorboard logger
    logger = Logger(sess, config)
  • Pass the all these objects to the trainer object, and start your training by calling "trainer.train()"
    trainer = VGGTrainer(sess, model, data, config, logger)

    # here you train your model
    trainer.train()

You will find a template file and a simple example in the model and trainer folder that shows you how to try your first model simply.

In Details

Project architecture

Folder structure

├──  base
│   ├── base_model.py   - this file contains the abstract class of the model.
│   └── base_train.py   - this file contains the abstract class of the trainer.
│
│
├── model               - this folder contains any model of your project.
│   └── example_model.py
│
│
├── trainer             - this folder contains trainers of your project.
│   └── example_trainer.py
│   
├──  mains              - here's the main(s) of your project (you may need more than one main).
│    └── example_main.py  - here's an example of main that is responsible for the whole pipeline.

│  
├──  data _loader  
│    └── data_generator.py  - here's the data_generator that is responsible for all data handling.
│ 
└── utils
     ├── logger.py
     └── any_other_utils_you_need

Main Components

Models


  • Base model

    Base model is an abstract class that must be Inherited by any model you create, the idea behind this is that there's much shared stuff between all models. The base model contains:

    • Save -This function to save a checkpoint to the desk.
    • Load -This function to load a checkpoint from the desk.
    • Cur_epoch, Global_step counters -These variables to keep track of the current epoch and global step.
    • Init_Saver An abstract function to initialize the saver used for saving and loading the checkpoint, Note: override this function in the model you want to implement.
    • Build_model Here's an abstract function to define the model, Note: override this function in the model you want to implement.
  • Your model

    Here's where you implement your model. So you should :

    • Create your model class and inherit the base_model class
    • override "build_model" where you write the tensorflow model you want
    • override "init_save" where you create a tensorflow saver to use it to save and load checkpoint
    • call the "build_model" and "init_saver" in the initializer.

Trainer


  • Base trainer

    Base trainer is an abstract class that just wrap the training process.

  • Your trainer

    Here's what you should implement in your trainer.

    1. Create your trainer class and inherit the base_trainer class.
    2. override these two functions "train_step", "train_epoch" where you implement the training process of each step and each epoch.

Data Loader

This class is responsible for all data handling and processing and provide an easy interface that can be used by the trainer.

Logger

This class is responsible for the tensorboard summary, in your trainer create a dictionary of all tensorflow variables you want to summarize then pass this dictionary to logger.summarize().

This class also supports reporting to Comet.ml which allows you to see all your hyper-params, metrics, graphs, dependencies and more including real-time metric. Add your API key in the configuration file:

For example: "comet_api_key": "your key here"

Comet.ml Integration

This template also supports reporting to Comet.ml which allows you to see all your hyper-params, metrics, graphs, dependencies and more including real-time metric.

Add your API key in the configuration file:

For example: "comet_api_key": "your key here"

Here's how it looks after you start training:

You can also link your Github repository to your comet.ml project for full version control. Here's a live page showing the example from this repo

Configuration

I use Json as configuration method and then parse it, so write all configs you want then parse it using "utils/config/process_config" and pass this configuration object to all other objects.

Main

Here's where you combine all previous part.

  1. Parse the config file.
  2. Create a tensorflow session.
  3. Create an instance of "Model", "Data_Generator" and "Logger" and parse the config to all of them.
  4. Create an instance of "Trainer" and pass all previous objects to it.
  5. Now you can train your model by calling "Trainer.train()"

Future Work

  • Replace the data loader part with new tensorflow dataset API.

Contributing

Any kind of enhancement or contribution is welcomed.

Acknowledgments

Thanks for my colleague Mo'men Abdelrazek for contributing in this work. and thanks for Mohamed Zahran for the review. Thanks for Jtoy for including the repo in Awesome Tensorflow.

Owner
Mahmoud Gamal Salem
MSc. in AI at university of Guelph and Vector Institute. AI intern @samsung
Mahmoud Gamal Salem
Implementation for the paper 'YOLO-ReT: Towards High Accuracy Real-time Object Detection on Edge GPUs'

YOLO-ReT This is the original implementation of the paper: YOLO-ReT: Towards High Accuracy Real-time Object Detection on Edge GPUs. Prakhar Ganesh, Ya

69 Oct 19, 2022
Attention mechanism with MNIST dataset

[TensorFlow] Attention mechanism with MNIST dataset Usage $ python run.py Result Training Loss graph. Test Each figure shows input digit, attention ma

YeongHyeon Park 12 Jun 10, 2022
Sequence to Sequence Models with PyTorch

Sequence to Sequence models with PyTorch This repository contains implementations of Sequence to Sequence (Seq2Seq) models in PyTorch At present it ha

Sandeep Subramanian 708 Dec 19, 2022
This implements the learning and inference/proposal algorithm described in "Learning to Propose Objects, Krähenbühl and Koltun"

Learning to propose objects This implements the learning and inference/proposal algorithm described in "Learning to Propose Objects, Krähenbühl and Ko

Philipp Krähenbühl 90 Sep 10, 2021
PyTorch implementation of Hierarchical Multi-label Text Classification: An Attention-based Recurrent Network

hierarchical-multi-label-text-classification-pytorch Hierarchical Multi-label Text Classification: An Attention-based Recurrent Network Approach This

Mingu Kang 17 Dec 13, 2022
SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data

SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data Au

14 Nov 28, 2022
Instantaneous Motion Generation for Robots and Machines.

Ruckig Instantaneous Motion Generation for Robots and Machines. Ruckig generates trajectories on-the-fly, allowing robots and machines to react instan

Berscheid 374 Dec 23, 2022
Deep-learning X-Ray Micro-CT image enhancement, pore-network modelling and continuum modelling

EDSR modelling A Github repository for deep-learning image enhancement, pore-network and continuum modelling from X-Ray Micro-CT images. The repositor

Samuel Jackson 7 Nov 03, 2022
Pytorch Lightning code guideline for conferences

Deep learning project seed Use this seed to start new deep learning / ML projects. Built in setup.py Built in requirements Examples with MNIST Badges

Pytorch Lightning 1k Jan 02, 2023
Vector Quantization, in Pytorch

Vector Quantization - Pytorch A vector quantization library originally transcribed from Deepmind's tensorflow implementation, made conveniently into a

Phil Wang 665 Jan 08, 2023
An implementation of the efficient attention module.

Efficient Attention An implementation of the efficient attention module. Description Efficient attention is an attention mechanism that substantially

Shen Zhuoran 194 Dec 15, 2022
This repository contains a Ruby API for utilizing TensorFlow.

tensorflow.rb Description This repository contains a Ruby API for utilizing TensorFlow. Linux CPU Linux GPU PIP Mac OS CPU Not Configured Not Configur

somatic labs 825 Dec 26, 2022
Registration Loss Learning for Deep Probabilistic Point Set Registration

RLLReg This repository contains a Pytorch implementation of the point set registration method RLLReg. Details about the method can be found in the 3DV

Felix Järemo Lawin 35 Nov 02, 2022
Tensorflow-Project-Template - A best practice for tensorflow project template architecture.

Tensorflow Project Template A simple and well designed structure is essential for any Deep Learning project, so after a lot of practice and contributi

Mahmoud G. Salem 3.6k Dec 22, 2022
Code for classifying international patents based on the text of their titles/abstracts

Patent Classification Goal: To train a machine learning classifier that can automatically classify international patents downloaded from the WIPO webs

Prashanth Rao 1 Nov 08, 2022
Pytorch codes for Feature Transfer Learning for Face Recognition with Under-Represented Data

FTLNet_Pytorch Pytorch codes for Feature Transfer Learning for Face Recognition with Under-Represented Data 1. Introduction This repo is an unofficial

1 Nov 04, 2020
A trusty face recognition research platform developed by Tencent Youtu Lab

Introduction TFace: A trusty face recognition research platform developed by Tencent Youtu Lab. It provides a high-performance distributed training fr

Tencent 956 Jan 01, 2023
NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling

NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling For Official repo of NU-Wave: A Diffusion Probabilistic Model for Neural Audio Up

Rishikesh (ऋषिकेश) 38 Oct 11, 2022
Pytorch implementation of the paper "Optimization as a Model for Few-Shot Learning"

Optimization as a Model for Few-Shot Learning This repo provides a Pytorch implementation for the Optimization as a Model for Few-Shot Learning paper.

Albert Berenguel Centeno 238 Jan 04, 2023
10x faster matrix and vector operations

Bolt is an algorithm for compressing vectors of real-valued data and running mathematical operations directly on the compressed representations. If yo

2.3k Jan 09, 2023