File-based TF-IDF: Calculates keywords in a document, using a word corpus.

Related tags

Text Data & NLPtf-idf
Overview

File-based TF-IDF

Calculates keywords in a document, using a word corpus.

Why?

Because I found myself with hundreds of plain text files, with no way to know what each one contains. I then recalled this thing called TF-IDF from university, but found no utility that operates on files. Hence, here we are.

How?

Basically, each word in the current document gets a score. The score increases each time the word it appears in this document, and decreases each time it appears in another document. The words with the highest scores will thus (theoretically) be the keywords.

Of course, this requires you to have many other documents (the corpus) to compare with. They should contain approximately the same language. For example, it makes sense to split chapters in a book and use those as the corpus. Use your senses.

Installation

Copy tfidf.py to some location on $PATH

Usage

usage: tfidf [-h] [--json] [--min-df MIN_DF] [-n N | --all] --input-document INPUT_DOCUMENT [corpus ...]

Calculates keywords in a document, using a word corpus.

positional arguments:
  corpus                corpus files (optional but highly reccommended)

options:
  -h, --help            show this help message and exit
  --json, -j            get output as json
  --min-df MIN_DF       if a word occurs less than this number of times in the corpus, it's not considered (default: 2)
  -n N                  limit output to this many words (default: 10)
  --all                 Don't limit the amount of words to output (default: false)
  --input-document INPUT_DOCUMENT, -i INPUT_DOCUMENT
                        document file to extract keywords from

Examples

To get the top 10 keywords for chapter 1 of Moby Dick:

# assume that *.txt matches all other chapters of mobydick
$ tfidf -n 10 -i mobydick_chapter1.txt *.txt

WORD             TF_IDF           TF               
passenger        0.003            0.002            
whenever         0.003            0.002            
money            0.003            0.002            
passengers       0.002            0.001            
purse            0.002            0.001            
me               0.002            0.011            
image            0.002            0.001            
hunks            0.002            0.001            
respectfully     0.002            0.001            
robust           0.002            0.001            
-----
num words in corpus: 208425
$ tfidf --all -j -i mobydick_chapter1.txt *.txt
[
    {
        "word": "lazarus",
        "tf_idf": 0.0052818627137794375,
        "tf": 0.0028169014084507044
    },
    {
        "word": "frost",
        "tf_idf": 0.004433890895007659,
        "tf": 0.0028169014084507044
    },
    {
        "word": "bedford",
        "tf_idf": 0.0037492766733561254,
        "tf": 0.0028169014084507044
    },
    ...
]

TF-IDF equations

t — term (word)
d — document (set of words)
corpus — (set of documents)
N — number of documents in corpus

tf(t,d) = count of t in d / number of words in d
df(t) = occurrence of t in N documents
idf(t) = N/df(t)

tf_idf(t, d) = tf(t, d) * idf(t)
Owner
Jakob Lindskog
Jakob Lindskog
Datasets of Automatic Keyphrase Extraction

This repository contains 20 annotated datasets of Automatic Keyphrase Extraction made available by the research community. Following are the datasets and the original papers that proposed them. If yo

LIAAD - Laboratory of Artificial Intelligence and Decision Support 163 Dec 23, 2022
Google's Meena transformer chatbot implementation

Here's my attempt at recreating Meena, a state of the art chatbot developed by Google Research and described in the paper Towards a Human-like Open-Domain Chatbot.

Francesco Pham 94 Dec 25, 2022
HiFi DeepVariant + WhatsHap workflowHiFi DeepVariant + WhatsHap workflow

HiFi DeepVariant + WhatsHap workflow Workflow steps align HiFi reads to reference with pbmm2 call small variants with DeepVariant, using two-pass meth

William Rowell 2 May 14, 2022
Coreference resolution for English, French, German and Polish, optimised for limited training data and easily extensible for further languages

Coreferee Author: Richard Paul Hudson, Explosion AI 1. Introduction 1.1 The basic idea 1.2 Getting started 1.2.1 English 1.2.2 French 1.2.3 German 1.2

Explosion 70 Dec 12, 2022
Transfer Learning from Speaker Verification to Multispeaker Text-To-Speech Synthesis (SV2TTS)

This repository is an implementation of Transfer Learning from Speaker Verification to Multispeaker Text-To-Speech Synthesis (SV2TTS) with a vocoder that works in real-time. Feel free to check my the

Corentin Jemine 38.5k Jan 03, 2023
Fine-tuning scripts for evaluating transformer-based models on KLEJ benchmark.

The KLEJ Benchmark Baselines The KLEJ benchmark (Kompleksowa Lista Ewaluacji Językowych) is a set of nine evaluation tasks for the Polish language und

Allegro Tech 17 Oct 18, 2022
Final Project Bootcamp Zero

The Quest (Pygame) Descripción Este es el repositorio de código The-Quest para el proyecto final Bootcamp Zero de KeepCoding. El juego consiste en la

Seven-z01 1 Mar 02, 2022
Code for ACL 2021 main conference paper "Conversations are not Flat: Modeling the Intrinsic Information Flow between Dialogue Utterances".

Conversations are not Flat: Modeling the Intrinsic Information Flow between Dialogue Utterances This repository contains the code and pre-trained mode

ICTNLP 90 Dec 27, 2022
Simple virtual assistant using pyttsx3 and speech recognition optionally with pywhatkit and pther libraries.

VirtualAssistant Simple virtual assistant using pyttsx3 and speech recognition optionally with pywhatkit and pther libraries. Third Party Libraries us

Logadheep 1 Nov 27, 2021
ConvBERT: Improving BERT with Span-based Dynamic Convolution

ConvBERT Introduction In this repo, we introduce a new architecture ConvBERT for pre-training based language model. The code is tested on a V100 GPU.

YITUTech 237 Dec 10, 2022
Refactored version of FastSpeech2

Refactored version of FastSpeech2. An implementation of Microsoft's "FastSpeech 2: Fast and High-Quality End-to-End Text to Speech"

ILJI CHOI 10 May 26, 2022
A simple visual front end to the Maya UE4 RBF plugin delivered with MetaHumans

poseWrangler Overview PoseWrangler is a simple UI to create and edit pose-driven relationships in Maya using the MayaUE4RBF plugin. This plugin is dis

Christopher Evans 105 Dec 18, 2022
Anomaly Detection 이상치 탐지 전처리 모듈

Anomaly Detection 시계열 데이터에 대한 이상치 탐지 1. Kernel Density Estimation을 활용한 이상치 탐지 train_data_path와 test_data_path에 존재하는 시점 정보를 포함하고 있는 csv 형태의 train data와

CLUST-consortium 43 Nov 28, 2022
Twitter bot that uses NLP models to summarize news articles referenced in a user's twitter timeline

Twitter-News-Summarizer Twitter bot that uses NLP models to summarize news articles referenced in a user's twitter timeline 1.) Extracts all tweets fr

Rohit Govindan 1 Jan 27, 2022
NLP Core Library and Model Zoo based on PaddlePaddle 2.0

PaddleNLP 2.0拥有丰富的模型库、简洁易用的API与高性能的分布式训练的能力,旨在为飞桨开发者提升文本建模效率,并提供基于PaddlePaddle 2.0的NLP领域最佳实践。

6.9k Jan 01, 2023
Sentiment-Analysis and EDA on the IMDB Movie Review Dataset

Sentiment-Analysis and EDA on the IMDB Movie Review Dataset The main part of the work focuses on the exploration and study of different approaches whi

Nikolas Petrou 1 Jan 12, 2022
(ACL 2022) The source code for the paper "Towards Abstractive Grounded Summarization of Podcast Transcripts"

Towards Abstractive Grounded Summarization of Podcast Transcripts We provide the source code for the paper "Towards Abstractive Grounded Summarization

10 Jul 01, 2022
PortaSpeech - PyTorch Implementation

PortaSpeech - PyTorch Implementation PyTorch Implementation of PortaSpeech: Portable and High-Quality Generative Text-to-Speech. Model Size Module Nor

Keon Lee 276 Dec 26, 2022
Generate custom detailed survey paper with topic clustered sections and proper citations, from just a single query in just under 30 mins !!

Auto-Research A no-code utility to generate a detailed well-cited survey with topic clustered sections (draft paper format) and other interesting arti

Sidharth Pal 20 Dec 14, 2022
A machine learning model for analyzing text for user sentiment and determine whether its a positive, neutral, or negative review.

Sentiment Analysis on Yelp's Dataset Author: Roberto Sanchez, Talent Path: D1 Group Docker Deployment: Deployment of this application can be found her

Roberto Sanchez 0 Aug 04, 2021