Solutions of Reinforcement Learning 2nd Edition

Overview

Solutions of Reinforcement Learning 2nd Edition (Original Book by Richard S. Sutton,Andrew G. Barto)

How to contribute and current situation (9/11/2021~)

I have been working as a full-time AI engineer and barely have free time to manage this project any more. I want to make a simple guidance of how to response to contributions:

For exercises that have no answer yet, (for example, chapter 12)

  1. Prepare your latex code, make sure it works and looks somewhat nice.
  2. Send you code to [email protected]. By default, I will put contributer's name in the pdf file, besides the exercise. You can be anoymous as well just noted in the email.
  3. I will update the corresponding solution pdf.

For solution that you think is wrong, but it is trivial to change:

  1. Ask in issues. If there are multiple confirmations and reports to the same issue, I will change the excercise. (the pass rate of such issue is around 30%)

For solution that you think is wrong or incomplete, but it is hard to say that in issue.

Follow the first steps (just as if this exercise has no solution)

I know there is an automatic-ish commit and contribute to pdf procedure, but from the number of contributions, I decide to pass it on. (currently only 2% is contributed by person other than me)

Now I am more concentrated on computer vision and have less time contributing to the interest (RL). But I do hope and think RL is the future subject that will be on the top of AI pyramid one day and I will come back. Thanks for all your supports and best wishes to your own careers.

Those students who are using this to complete your homework, stop it. This is written for serving millions of self-learners who do not have official guide or proper learning environment. And, Of Course, as a personal project, it has ERRORS. (Contribute to issues if you find any).

Welcome to this project. It is a tiny project where we don't do too much coding (yet) but we cooperate together to finish some tricky exercises from famous RL book Reinforcement Learning, An Introduction by Sutton. You may know that this book, especially the second version which was published last year, has no official solution manual. If you send your answer to the email address that the author leaved, you will be returned a fake answer sheet that is incomplete and old. So, why don't we write our own? Most of problems are mathematical proof in which one can learn the therotical backbone nicely but some of them are quite challenging coding problems. Both of them will be updated gradually but math will go first.

Main author would be me and current main cooperater is Jean Wissam Dupin, and before was Zhiqi Pan (quitted now).

Main Contributers for Error Fixing:

burmecia's Work (Error Fix and code contribution)

Chapter 3: Ex 3.4, 3.5, 3.6, 3.9, 3.19

Chapter4: Ex 4.7 Code(in Julia)

Jean's Work (Error Fix):

Chapter 3: Ex 3.8, 3.11, 3.14, 3.23, 3.24, 3.26, 3.28, 3.29, 4.5

QihuaZhong's Work (Error fix, analysis)

Ex 6.11, 5.11, 10.5, 10.6

luigift's Work (Error fix, algorithm contribution)

Ex 10.4 10.6 10.7 Ex 12.1 (alternative solution)

Other people (Error Fix):

Ex 10.2 SHITIANYU-hue Ex 10.6 10.7 Mohammad Salehi

ABOUT MISTAKES:

Don't even expect the solutions be perfect, there are always mistakes. Especially in Chapter 3, where my mind was in a rush there. And, sometimes the problems are just open. Show your ideas and question them in 'issues' at any time!

Let's roll'n out!

UPDATE LOG:

Will update and revise this repo after 2021 April

[UPDATE APRIL 2020] After implementing Ape-X and D4PG in my another project, I will go back to this project and at least finish the policy gradient chapter.

[UPDATE MAR 2020] Chapter 12 almost finished and is updated, except for the last 2 questions. One for dutch trace and one for double expected SARSA. They are tricker than other exercises and I will update them little bit later. Please share your ideas by opening issues if you already hold a valid solution.**

[UPDATE MAR 2020] Due to multiple interviews ( it is interview season in japan ( despite the virus!)), I have to postpone the plan of update to March or later, depending how far I could go. (That means I am doing leetcode-ish stuff every day)

[UPDATE JAN 2020] Future works will NOT be stopped. I will try to finish it in FEB 2020.

[UPDATE JAN 2020] Chapter 12's ideas are not so hard but questions are very difficult. (most chanllenging one in this book ). As far, I have finished up to Ex 12.5 and I think my answer of Ex 12.1 is the only valid one on the internet (or not, challenge welcomed!) But because later half is even more challenging (tedious when it is related to many infiite sums), I would release the final version little bit later.

[UPDATE JAN 2020] Chapter 11 updated. One might have to read the referenced link to Sutton's paper in order to understand some part. Espeically how and why Emphatic-TD works.

[UPDATE JAN 2020] Chapter 10 is long but interesting! Move on!

[UPDATE DEC 2019] Chapter 9 takes long time to read thoroughly but practices are surprisingly just a few. So after uploading the Chapter 9 pdf and I really do think I should go back to previous chapters to complete those programming practices.

Chapter 12

[Updated March 27] Almost finished.

CHAPTER 12 SOLUTION PDF HERE

Chapter 11

Major challenges about off-policy learning. Like Chapter 9, practices are short.

CHAPTER 11 SOLUTION PDF HERE

Chapter 10

It is a substantial complement to Chapter 9. Still many open problems which are very interesting.

CHAPTER 10 SOLUTION PDF HERE

Chapter 9

Long chapter, short practices.

CHAPTER 9 SOLUTION PDF HERE

Chapter 8

Finished without programming. Plan on creating additional exercises to this Chapter because many materials are lack of practice.

CHAPTER 8 SOLUTION PDF HERE

Chapter 7

Finished without programming. Thanks for help from Zhiqi Pan.

CHAPTER 7 SOLUTION PDF HERE

Chapter 6

Fully finished.

CHAPTER 6 SOLUTION PDF HERE

Chapter 5

Partially finished.

CHAPTER 5 SOLUTION PDF HERE

Chapter 4

Finished. Ex4.7 Partially finished. Dat DP question will burn my mind and macbook but I encourage any one who cares nothing about that trying to do yourself. Running through it forces you remember everything behind ordinary DP.:)

CHAPTER 4 SOLUTION PDF HERE

Chapter 3 (I was in a rush in this chapter. Be aware about strange answers if any.)

CHAPTER 3 SOLUTION PDF HERE

Owner
YIFAN WANG
RL & TENSOR Now CV + NLP.
YIFAN WANG
Deep Crop Rotation

Deep Crop Rotation Paper (to come very soon!) We propose a deep learning approach to modelling both inter- and intra-annual patterns for parcel classi

Félix Quinton 5 Sep 23, 2022
Ἀνατομή is a PyTorch library to analyze representation of neural networks

Ἀνατομή is a PyTorch library to analyze representation of neural networks

Ryuichiro Hataya 50 Dec 05, 2022
Wide Residual Networks (WideResNets) in PyTorch

Wide Residual Networks (WideResNets) in PyTorch WideResNets for CIFAR10/100 implemented in PyTorch. This implementation requires less GPU memory than

Jason Kuen 296 Dec 27, 2022
MoveNetを用いたPythonでの姿勢推定のデモ

MoveNet-Python-Example MoveNetのPythonでの動作サンプルです。 ONNXに変換したモデルも同梱しています。変換自体を試したい方はMoveNet_tf2onnx.ipynbを使用ください。 2021/08/24時点でTensorFlow Hubで提供されている以下モデ

KazuhitoTakahashi 38 Dec 17, 2022
This is the code of using DQN to play Sekiro .

Update for using DQN to play sekiro 2021.2.2(English Version) This is the code of using DQN to play Sekiro . I am very glad to tell that I have writen

144 Dec 25, 2022
AI-Fitness-Tracker - AI Fitness Tracker With Python

AI-Fitness-Tracker We have build a AI based Fitness Tracker using OpenCV and Pyt

Sharvari Mangale 5 Feb 09, 2022
EvoJAX is a scalable, general purpose, hardware-accelerated neuroevolution toolkit

EvoJAX: Hardware-Accelerated Neuroevolution EvoJAX is a scalable, general purpose, hardware-accelerated neuroevolution toolkit. Built on top of the JA

Google 598 Jan 07, 2023
An improvement of FasterGICP: Acceptance-rejection Sampling based 3D Lidar Odometry

fasterGICP This package is an improvement of fast_gicp Please cite our paper if possible. W. Jikai, M. Xu, F. Farzin, D. Dai and Z. Chen, "FasterGICP:

79 Dec 31, 2022
using STGCN to achieve egg classification task

EEG Classification   The task requires us to classify electroencephalography(EEG) into six categories, including human body, human face, animal body,

4 Jun 13, 2022
Reading list for research topics in Masked Image Modeling

awesome-MIM Reading list for research topics in Masked Image Modeling(MIM). We list the most popular methods for MIM, if I missed something, please su

ligang 231 Dec 07, 2022
face2comics by Sxela (Alex Spirin) - face2comics datasets

This is a paired face to comics dataset, which can be used to train pix2pix or similar networks.

Alex 164 Nov 13, 2022
The code for the NSDI'21 paper "BMC: Accelerating Memcached using Safe In-kernel Caching and Pre-stack Processing".

BMC The code for the NSDI'21 paper "BMC: Accelerating Memcached using Safe In-kernel Caching and Pre-stack Processing". BibTex entry available here. B

Orange 383 Dec 16, 2022
MediaPipeで姿勢推定を行い、Tokyo2020オリンピック風のピクトグラムを表示するデモ

Tokyo2020-Pictogram-using-MediaPipe MediaPipeで姿勢推定を行い、Tokyo2020オリンピック風のピクトグラムを表示するデモです。 Tokyo2020Pictgram02.mp4 Requirement mediapipe 0.8.6 or later O

KazuhitoTakahashi 295 Dec 26, 2022
LTR_CrossEncoder: Legal Text Retrieval Zalo AI Challenge 2021

LTR_CrossEncoder: Legal Text Retrieval Zalo AI Challenge 2021 We propose a cross encoder model (LTR_CrossEncoder) for information retrieval, re-retrie

Hieu Duong 7 Jan 12, 2022
CNNs for Sentence Classification in PyTorch

Introduction This is the implementation of Kim's Convolutional Neural Networks for Sentence Classification paper in PyTorch. Kim's implementation of t

Shawn Ng 956 Dec 19, 2022
AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty

AugMix Introduction We propose AugMix, a data processing technique that mixes augmented images and enforces consistent embeddings of the augmented ima

Google Research 876 Dec 17, 2022
Generate image analogies using neural matching and blending

neural image analogies This is basically an implementation of this "Image Analogies" paper, In our case, we use feature maps from VGG16. The patch mat

Adam Wentz 3.5k Jan 08, 2023
Machine learning Bot detection technique, based on United States election dataset

Machine learning Bot detection technique, based on United States election dataset (2020). Current github repo provides implementation described in pap

Alexander Shevtsov 4 Nov 20, 2022
Technical Analysis library in pandas for backtesting algotrading and quantitative analysis

bta-lib - A pandas based Technical Analysis Library bta-lib is pandas based technical analysis library and part of the backtrader family. Links Main P

DRo 393 Dec 20, 2022
Yet another video caption

Yet another video caption

Fan Zhimin 5 May 26, 2022