Creating a statistical model to predict 10 year treasury yields

Overview

Predicting 10-Year Treasury Yields

Intitially, I wanted to see if the volatility in the stock market, represented by the VIX index (data source), had a tangible impact on 10-Year Treasury yields (data source). Below are the results of my exploration of the VIX's effect on 10Y yields:

Line Graph Comparing VIX Price and Yield over the last 31 years

VIX and Yield TS

As can be seen in the above graph, there doesn't seem to be much correlation off the bat, simply looking at their annual trends. Overall, yields seem to have dropped quite dramatically over the last 31 years, with not much reaction to major changes in volatility. Meanwhile, VIX has had a more dramatic journey, with plenty of large ups and downs. Although it doesn't seem like much of a correlation from this view, it would be more beneficial to look at a scatter plot and create a regression line to be sure.

VIX vs. Yield Scatter Plot

VIX vs. Yield

The red line in the scatter plot is the regression line obtained. The regression line seems to be slanted downward, indicating a negative effect. This means that when the volatility in the stock market goes up, 10Y Treasury yields go down. The regression equation: 10-Year Treasury Yield = 4.71 + -0.02(VIX Price) indicates that an increase of $1 US in the VIX price would cause the yield to go down by 0.02 percentage points. Since the VIX price will never be $0, it does not make sense to interpret the y-intercept of 4.71. Thus, based on this scatter plot, and the fact that there is a slope to regression line, there may be a significant impact on yield by the price of VIX. However, to check if it is statistically significant, the t-statistic is needed.

Stata Analysis

Thus, I decided to run some statistical analysis in stata, contained here. The first regression I ran was between VIX Price and 10Y yields to see if there was any statistically significant effect of stock volatility on yields. When checking for statistical significance in the 5% size, the t-statistic of the coefficient must be either above 1.96 or below -1.96 to be considered significant. In this case, the t-statistic was -1.46, which meant that the stock volatility was not statistically significant.

...Not so fast. One issue with trying to simplify trends in this way is that omitted variables could play a big part in the statistical significance of present variables. Thus, I decided to use 4 more key macroeconomical datasets: unemployment rate, interest rate, change in CPI, and inflationary expectations. With these 4 key parts of the economy accounted for, I ran another regression, including all of the variables against the yield.

The new data was quite interesting. I had expected the change in CPI and inflationary expectations to be really important factors, but it turns out they are statistically insignificant. The t-statistic for change in CPI was 0.12 and for inflationary expectations was -1.71, short of the 1.96 and -1.96 thresholds required respectively. On the other hand, the t-statistic for the VIX Price dropped to -3.49, meaning that some of the variables that were added to the model were in fact invisibly impacting the effects of the volatility. The unemployment rate and interest rate were both statistically significant, with t-statistics of 10.99 and 37.20 respectively. Overall, 80.19% of the variation in the 10-Year Treasury yield could be explained by my model.

Interest Rate vs. 10-Year Treasury Yield Graph

ir vs. yield

Having seen the graph of a statistically insignificant variable (pre-multiple regression), I wanted to plot a scatter plot of an extremely significant variable to see the contrast. It is clear that there is a clear positive relationship between interest rate and the 10-Year Treasury yield. The regression line: 10-Year Treasury Yield = 2.31 + 0.73(Interest Rate) indicates that an increase in interest rate of 1 percentage point leads to a 0.73 percentage point increase in the yield. It is possible for rates to come down to 0, so the y-intercept indicates that the 10Y Treasury Note yields 2.31% when the interest rate hits 0. The constrast between the two red regression lines, as well as the distribution of the dots shown in the two scatter plots is quite clear, indicating how statistically significant the two variables are comparitavely.

Project instructions

10Y Treasury data citation:

OECD, "Main Economic Indicators - complete database", Main Economic Indicators (database),http://dx.doi.org/10.1787/data-00052-en (October 23, 2021) Copyright, 2016, OECD. Reprinted with permission.

Change in CPI data citation:

OECD, "Main Economic Indicators - complete database", Main Economic Indicators (database),http://dx.doi.org/10.1787/data-00052-en (October 23, 2021) Copyright, 2016, OECD. Reprinted with permission.

Inflation Expectation data citation:

Surveys of Consumers, University of Michigan, University of Michigan: Inflation Expectation© [MICH], retrieved from FRED, Federal Reserve Bank of St. Louis https://fred.stlouisfed.org/series/MICH/, (October 23, 2021)

Pypeln is a simple yet powerful Python library for creating concurrent data pipelines.

Pypeln Pypeln (pronounced as "pypeline") is a simple yet powerful Python library for creating concurrent data pipelines. Main Features Simple: Pypeln

Cristian Garcia 1.4k Dec 31, 2022
A Big Data ETL project in PySpark on the historical NYC Taxi Rides data

Processing NYC Taxi Data using PySpark ETL pipeline Description This is an project to extract, transform, and load large amount of data from NYC Taxi

Unnikrishnan 2 Dec 12, 2021
Hg002-qc-snakemake - HG002 QC Snakemake

HG002 QC Snakemake To Run Resources and data specified within snakefile (hg002QC

Juniper A. Lake 2 Feb 16, 2022
Utilize data analytics skills to solve real-world business problems using Humana’s big data

Humana-Mays-2021-HealthCare-Analytics-Case-Competition- The goal of the project is to utilize data analytics skills to solve real-world business probl

Yongxian (Caroline) Lun 1 Dec 27, 2021
The OHSDI OMOP Common Data Model allows for the systematic analysis of healthcare observational databases.

The OHSDI OMOP Common Data Model allows for the systematic analysis of healthcare observational databases.

Bell Eapen 14 Jan 02, 2023
Template for a Dataflow Flex Template in Python

Dataflow Flex Template in Python This repository contains a template for a Dataflow Flex Template written in Python that can easily be used to build D

STOIX 5 Apr 28, 2022
Spectacular AI SDK fuses data from cameras and IMU sensors and outputs an accurate 6-degree-of-freedom pose of a device.

Spectacular AI SDK examples Spectacular AI SDK fuses data from cameras and IMU sensors (accelerometer and gyroscope) and outputs an accurate 6-degree-

Spectacular AI 94 Jan 04, 2023
Statistical package in Python based on Pandas

Pingouin is an open-source statistical package written in Python 3 and based mostly on Pandas and NumPy. Some of its main features are listed below. F

Raphael Vallat 1.2k Dec 31, 2022
Data Analytics on Genomes and Genetics

Data Analytics performed on On genomes and Genetics dataset to predict genetic disorder and disorder subclass. DONE by TEAM SIGMA!

1 Jan 12, 2022
Describing statistical models in Python using symbolic formulas

Patsy is a Python library for describing statistical models (especially linear models, or models that have a linear component) and building design mat

Python for Data 866 Dec 16, 2022
A set of tools to analyse the output from TraDIS analyses

QuaTradis (Quadram TraDis) A set of tools to analyse the output from TraDIS analyses Contents Introduction Installation Required dependencies Bioconda

Quadram Institute Bioscience 2 Feb 16, 2022
Stream-Kafka-ELK-Stack - Weather data streaming using Apache Kafka and Elastic Stack.

Streaming Data Pipeline - Kafka + ELK Stack Streaming weather data using Apache Kafka and Elastic Stack. Data source: https://openweathermap.org/api O

Felipe Demenech Vasconcelos 2 Jan 20, 2022
Meltano: ELT for the DataOps era. Meltano is open source, self-hosted, CLI-first, debuggable, and extensible.

Meltano is open source, self-hosted, CLI-first, debuggable, and extensible. Pipelines are code, ready to be version c

Meltano 625 Jan 02, 2023
Pipeline to convert a haploid assembly into diploid

HapDup (haplotype duplicator) is a pipeline to convert a haploid long read assembly into a dual diploid assembly. The reconstructed haplotypes

Mikhail Kolmogorov 50 Jan 05, 2023
PCAfold is an open-source Python library for generating, analyzing and improving low-dimensional manifolds obtained via Principal Component Analysis (PCA).

PCAfold is an open-source Python library for generating, analyzing and improving low-dimensional manifolds obtained via Principal Component Analysis (PCA).

Burn Research 4 Oct 13, 2022
CPSPEC is an astrophysical data reduction software for timing

CPSPEC manual Introduction CPSPEC is an astrophysical data reduction software for timing. Various timing properties, such as power spectra and cross s

Tenyo Kawamura 1 Oct 20, 2021
Spaghetti: an open-source Python library for the analysis of network-based spatial data

pysal/spaghetti SPAtial GrapHs: nETworks, Topology, & Inference Spaghetti is an open-source Python library for the analysis of network-based spatial d

Python Spatial Analysis Library 203 Jan 03, 2023
A real-time financial data streaming pipeline and visualization platform using Apache Kafka, Cassandra, and Bokeh.

Realtime Financial Market Data Visualization and Analysis Introduction This repo shows my project about real-time stock data pipeline. All the code is

6 Sep 07, 2022
A lightweight, hub-and-spoke dashboard for multi-account Data Science projects

A lightweight, hub-and-spoke dashboard for cross-account Data Science Projects Introduction Modern Data Science environments often involve many indepe

AWS Samples 3 Oct 30, 2021
BAyesian Model-Building Interface (Bambi) in Python.

Bambi BAyesian Model-Building Interface in Python Overview Bambi is a high-level Bayesian model-building interface written in Python. It's built on to

861 Dec 29, 2022