Codebase for arXiv preprint "NeRF++: Analyzing and Improving Neural Radiance Fields"

Overview

NeRF++

Codebase for arXiv preprint "NeRF++: Analyzing and Improving Neural Radiance Fields"

  • Work with 360 capture of large-scale unbounded scenes.
  • Support multi-gpu training and inference with PyTorch DistributedDataParallel (DDP).
  • Optimize per-image autoexposure (experimental feature).

Demo

Data

  • Download our preprocessed data from tanks_and_temples, lf_data.
  • Put the data in the sub-folder data/ of this code directory.
  • Data format.
    • Each scene consists of 3 splits: train/test/validation.
    • Intrinsics and poses are stored as flattened 4x4 matrices (row-major).
    • Pixel coordinate of an image's upper-left corner is (column, row)=(0, 0), lower-right corner is (width-1, height-1).
    • Poses are camera-to-world, not world-to-camera transformations.
    • Opencv camera coordinate system is adopted, i.e., x--->right, y--->down, z--->scene. Similarly, intrinsic matrix also follows Opencv convention.
    • To convert camera poses between Opencv and Opengl conventions, the following code snippet can be used for both Opengl2Opencv and Opencv2Opengl.
      import numpy as np
      def convert_pose(C2W):
          flip_yz = np.eye(4)
          flip_yz[1, 1] = -1
          flip_yz[2, 2] = -1
          C2W = np.matmul(C2W, flip_yz)
          return C2W
    • Scene normalization: move the average camera center to origin, and put all the camera centers inside the unit sphere.

Create environment

conda env create --file environment.yml
conda activate nerfplusplus

Training (Use all available GPUs by default)

python ddp_train_nerf.py --config configs/tanks_and_temples/tat_training_truck.txt

Testing (Use all available GPUs by default)

python ddp_test_nerf.py --config configs/tanks_and_temples/tat_training_truck.txt \
                        --render_splits test,camera_path

Note: due to restriction imposed by torch.distributed.gather function, please make sure the number of pixels in each image is divisible by the number of GPUs if you render images parallelly.

Citation

Plese cite our work if you use the code.

@article{kaizhang2020,
    author    = {Kai Zhang and Gernot Riegler and Noah Snavely and Vladlen Koltun},
    title     = {NeRF++: Analyzing and Improving Neural Radiance Fields},
    journal   = {arXiv:2010.07492},
    year      = {2020},
}

Generate camera parameters (intrinsics and poses) with COLMAP SfM

You can use the scripts inside colmap_runner to generate camera parameters from images with COLMAP SfM.

  • Specify img_dir and out_dir in colmap_runner/run_colmap.py.
  • Inside colmap_runner/, execute command python run_colmap.py.
  • After program finishes, you would see the posed images in the folder out_dir/posed_images.
    • Distortion-free images are inside out_dir/posed_images/images.
    • Raw COLMAP intrinsics and poses are stored as a json file out_dir/posed_images/kai_cameras.json.
    • Normalized cameras are stored in out_dir/posed_images/kai_cameras_normalized.json. See the Scene normalization method in the Data section.
    • Split distortion-free images and kai_cameras_normalized.json according to your need. You might find the self-explanatory script data_loader_split.py helpful when you try converting the json file to data format compatible with NeRF++.

Visualize cameras in 3D

Check camera_visualizer/visualize_cameras.py for visualizing cameras in 3D. It creates an interactive viewer for you to inspect whether your cameras have been normalized to be compatible with this codebase. Below is a screenshot of the viewer: green cameras are used for training, blue ones are for testing, while yellow ones denote a novel camera path to be synthesized; red sphere is the unit sphere.

Inspect camera parameters

You can use camera_inspector/inspect_epipolar_geometry.py to inspect if the camera paramters are correct and follow the Opencv convention assumed by this codebase. The script creates a viewer for visually inspecting two-view epipolar geometry like below: for key points in the left image, it plots their correspoinding epipolar lines in the right image. If the epipolar geometry does not look correct in this visualization, it's likely that there are some issues with the camera parameters.

Owner
Kai Zhang
PhD candidate at Cornell.
Kai Zhang
Progressive Growing of GANs for Improved Quality, Stability, and Variation

Progressive Growing of GANs for Improved Quality, Stability, and Variation — Official TensorFlow implementation of the ICLR 2018 paper Tero Karras (NV

Tero Karras 5.9k Jan 05, 2023
Stochastic gradient descent with model building

Stochastic Model Building (SMB) This repository includes a new fast and robust stochastic optimization algorithm for training deep learning models. Th

S. Ilker Birbil 22 Jan 19, 2022
A annotation of yolov5-5.0

代码版本:0714 commit #4000 $ git clone https://github.com/ultralytics/yolov5 $ cd yolov5 $ git checkout 720aaa65c8873c0d87df09e3c1c14f3581d4ea61 这个代码只是注释版

Laughing 229 Dec 17, 2022
Code and data for ImageCoDe, a contextual vison-and-language benchmark

ImageCoDe This repository contains code and data for ImageCoDe: Image Retrieval from Contextual Descriptions. Data All collected descriptions for the

McGill NLP 27 Dec 02, 2022
An unofficial PyTorch implementation of a federated learning algorithm, FedAvg.

Federated Averaging (FedAvg) in PyTorch An unofficial implementation of FederatedAveraging (or FedAvg) algorithm proposed in the paper Communication-E

Seok-Ju Hahn 123 Jan 06, 2023
ANEA: Automated (Named) Entity Annotation for German Domain-Specific Texts

ANEA The goal of Automatic (Named) Entity Annotation is to create a small annotated dataset for NER extracted from German domain-specific texts. Insta

Anastasia Zhukova 2 Oct 07, 2022
Luminous is a framework for testing the performance of Embodied AI (EAI) models in indoor tasks.

Luminous is a framework for testing the performance of Embodied AI (EAI) models in indoor tasks. Generally, we intergrete different kind of functional

28 Jan 08, 2023
K-PLUG: Knowledge-injected Pre-trained Language Model for Natural Language Understanding and Generation in E-Commerce (EMNLP Founding 2021)

Introduction K-PLUG: Knowledge-injected Pre-trained Language Model for Natural Language Understanding and Generation in E-Commerce. Installation PyTor

Xu Song 21 Nov 16, 2022
Code for GNMR in ICDE 2021

GNMR Code for GNMR in ICDE 2021 Please unzip data files in Datasets/MultiInt-ML10M first. Run labcode_preSamp.py (with graph sampling) for ECommerce-c

7 Oct 27, 2022
Real-Time-Student-Attendence-System - Real Time Student Attendence System

Real-Time-Student-Attendence-System The Student Attendance Management System Pro

Rounak Das 1 Feb 15, 2022
An open source implementation of CLIP.

OpenCLIP Welcome to an open source implementation of OpenAI's CLIP (Contrastive Language-Image Pre-training). The goal of this repository is to enable

2.7k Dec 31, 2022
TensorFlowOnSpark brings TensorFlow programs to Apache Spark clusters.

TensorFlowOnSpark TensorFlowOnSpark brings scalable deep learning to Apache Hadoop and Apache Spark clusters. By combining salient features from the T

Yahoo 3.8k Jan 04, 2023
ECCV2020 paper: Fashion Captioning: Towards Generating Accurate Descriptions with Semantic Rewards. Code and Data.

This repo contains some of the codes for the following paper Fashion Captioning: Towards Generating Accurate Descriptions with Semantic Rewards. Code

Xuewen Yang 56 Dec 08, 2022
The official re-implementation of the Neurips 2021 paper, "Targeted Neural Dynamical Modeling".

Targeted Neural Dynamical Modeling Note: This is a re-implementation (in Tensorflow2) of the original TNDM model. We do not plan to further update the

6 Oct 05, 2022
Pytorch Lightning code guideline for conferences

Deep learning project seed Use this seed to start new deep learning / ML projects. Built in setup.py Built in requirements Examples with MNIST Badges

Pytorch Lightning 1k Jan 02, 2023
Full body anonymization - Realistic Full-Body Anonymization with Surface-Guided GANs

Realistic Full-Body Anonymization with Surface-Guided GANs This is the official

Håkon Hukkelås 30 Nov 18, 2022
Testability-Aware Low Power Controller Design with Evolutionary Learning, ITC2021

Testability-Aware Low Power Controller Design with Evolutionary Learning This repo contains the source code of Testability-Aware Low Power Controller

Lee Man 1 Dec 26, 2021
Neural Logic Inductive Learning

Neural Logic Inductive Learning This is the implementation of the Neural Logic Inductive Learning model (NLIL) proposed in the ICLR 2020 paper: Learn

36 Nov 28, 2022
PyTorch implementation of ECCV 2020 paper "Foley Music: Learning to Generate Music from Videos "

Foley Music: Learning to Generate Music from Videos This repo holds the code for the framework presented on ECCV 2020. Foley Music: Learning to Genera

Chuang Gan 30 Nov 03, 2022
[2021 MultiMedia] CONQUER: Contextual Query-aware Ranking for Video Corpus Moment Retrieval

CONQUER: Contexutal Query-aware Ranking for Video Corpus Moment Retreival PyTorch implementation of CONQUER: Contexutal Query-aware Ranking for Video

Hou zhijian 23 Dec 26, 2022