Lite-HRNet: A Lightweight High-Resolution Network

Overview

LiteHRNet Benchmark

🔥 🔥 Based on MMsegmentation 🔥 🔥

Cityscapes

FCN resize concat

config mIoU last mAcc last eval last mIoU best mAcc best eval best download
fcn-resize-concat_litehr18-with-head_512x1024_8x2_160k_cityscapes 71.81 80.6 10 71.81 80.6 10 log | 20210816_121228.log.json
fcn-resize-concat_litehr18-with-head_512x1024_8x2_320k_cityscapes 71.96 80.43 10 71.96 80.43 10 log | 20210816_121228.log.json
fcn-resize-concat_litehr18-with-head_512x1024_8x2_640k_cityscapes 69.29 78.91 8 69.29 78.91 8 log | 20210816_121228.log.json
fcn-resize-concat_litehr18-without-head_512x1024_8x2_160k_cityscapes 68.99 77.63 10 68.99 77.63 10 log | 20210816_121228.log.json
fcn-resize-concat_litehr18-without-head_512x1024_8x2_320k_cityscapes 70.42 78.72 10 70.42 78.72 10 log | 20210816_121228.log.json
fcn-resize-concat_litehr18-without-head_512x1024_8x2_640k_cityscapes 67.12 75.84 7 67.12 75.84 7 log | 20210816_121228.log.json
fcn-resize-concat_litehr30-with-head_512x1024_8x2_160k_cityscapes 73.81 82.42 10 73.81 82.42 10 log | 20210816_121228.log.json
fcn-resize-concat_litehr30-with-head_512x1024_8x2_320k_cityscapes 74.46 82.41 10 74.46 82.41 10 log | 20210816_121228.log.json
fcn-resize-concat_litehr30-with-head_512x1024_8x2_640k_cityscapes 69.15 79.65 6 69.15 79.65 6 log | 20210816_121228.log.json
fcn-resize-concat_litehr30-without-head_512x1024_8x2_160k_cityscapes 72.11 80.72 10 72.11 80.72 10 log | 20210816_121228.log.json
fcn-resize-concat_litehr30-without-head_512x1024_8x2_320k_cityscapes 72.12 80.15 10 72.12 80.15 10 log | 20210816_121228.log.json
fcn-resize-concat_litehr30-without-head_512x1024_8x2_640k_cityscapes 67.31 77.76 5 67.31 77.76 5 log | 20210816_121228.log.json

FCN

config mIoU last mAcc last eval last mIoU best mAcc best eval best download
fcn_litehr18-with-head_512x1024_8x2_160k_cityscapes 71.49 79.95 10 71.49 79.95 10 log | 20210816_121228.log.json
fcn_litehr18-with-head_512x1024_8x2_320k_cityscapes 73.03 81.35 10 73.03 81.35 10 log | 20210816_121228.log.json
fcn_litehr18-with-head_512x1024_8x2_640k_cityscapes 68.06 76.67 8 68.26 77.17 7 log | 20210816_121228.log.json
fcn_litehr18-without-head_512x1024_8x2_160k_cityscapes 69.43 78.15 10 69.43 78.15 10 log | 20210816_121228.log.json
fcn_litehr18-without-head_512x1024_8x2_320k_cityscapes 70.61 78.87 10 70.61 78.87 10 log | 20210816_121228.log.json
fcn_litehr18-without-head_512x1024_8x2_640k_cityscapes 63.83 73.11 4 63.83 73.11 4 log | 20210816_121228.log.json
fcn_litehr30-with-head_512x1024_8x2_160k_cityscapes 72.65 81.36 10 72.65 81.36 10 log | 20210816_121228.log.json
fcn_litehr30-with-head_512x1024_8x2_320k_cityscapes 74.98 83.22 10 74.98 83.22 10 log | 20210816_121228.log.json
fcn_litehr30-with-head_512x1024_8x2_640k_cityscapes 69.11 78.88 6 69.11 78.88 6 log | 20210816_121228.log.json
fcn_litehr30-without-head_512x1024_8x2_160k_cityscapes 72.78 81.37 10 72.78 81.37 10 log | 20210816_121228.log.json
fcn_litehr30-without-head_512x1024_8x2_320k_cityscapes 72.37 80.29 10 72.37 80.29 10 log | 20210816_121228.log.json
fcn_litehr30-without-head_512x1024_8x2_640k_cityscapes 63.53 74.6 4 65.91 75.91 3 log | 20210816_121228.log.json

ADE20k

FCN resize concat

config mIoU last mAcc last eval last mIoU best mAcc best eval best download
fcn-resize-concat_litehr18-with-head_512x512_160k_ade20k 16.15 22.12 2 16.15 22.12 2 log | 20210816_121228.log.json
fcn-resize-concat_litehr18-with-head_512x512_160k_ade20k 24.2 31.67 10 24.2 31.67 10 log | 20210816_121228.log.json
fcn-resize-concat_litehr18-with-head_512x512_160k_ade20k 26.17 34.86 10 26.17 34.86 10 log | 20210816_121228.log.json
fcn-resize-concat_litehr18-without-head_512x512_160k_ade20k 16.89 22.96 2 16.89 22.96 2 log | 20210816_121228.log.json
fcn-resize-concat_litehr18-without-head_512x512_160k_ade20k 24.71 32.46 10 24.71 32.46 10 log | 20210816_121228.log.json
fcn-resize-concat_litehr30-with-head_512x512_160k_ade20k 16.77 22.89 2 16.77 22.89 2 log | 20210816_121228.log.json
fcn-resize-concat_litehr30-with-head_512x512_160k_ade20k 26.81 34.96 10 26.81 34.96 10 log | 20210816_121228.log.json
fcn-resize-concat_litehr30-without-head_512x512_160k_ade20k 16.37 22.7 2 16.37 22.7 2 log | 20210816_121228.log.json
fcn-resize-concat_litehr30-without-head_512x512_160k_ade20k 24.38 32.52 10 24.38 32.52 10 log | 20210816_121228.log.json

FCN

config mIoU last mAcc last eval last mIoU best mAcc best eval best download
fcn_litehr18-with-head_512x512_160k_ade20k 0 0 0 0 0 0 log | 20210816_121228.log.json
fcn_litehr18-with-head_512x512_160k_ade20k 23.82 31.51 10 23.82 31.51 10 log | 20210816_121228.log.json
fcn_litehr18-with-head_512x512_160k_ade20k 24.14 31.81 10 24.14 31.81 10 log | 20210816_121228.log.json
fcn_litehr18-without-head_512x512_160k_ade20k 12.23 17.0 2 12.23 17.0 2 log | 20210816_121228.log.json
fcn_litehr18-without-head_512x512_160k_ade20k 20.82 27.58 10 20.82 27.58 10 log | 20210816_121228.log.json
fcn_litehr18-without-head_512x512_160k_ade20k 21.98 29.06 10 21.98 29.06 10 log | 20210816_121228.log.json
fcn_litehr30-with-head_512x512_160k_ade20k 14.11 19.06 3 14.11 19.06 3 log | 20210816_121228.log.json
fcn_litehr30-with-head_512x512_160k_ade20k 24.06 31.78 10 24.06 31.78 10 log | 20210816_121228.log.json
fcn_litehr30-without-head_512x512_160k_ade20k 14.37 19.21 3 14.37 19.21 3 log | 20210816_121228.log.json
fcn_litehr30-without-head_512x512_160k_ade20k 25.22 32.67 10 25.22 32.67 10 log | 20210816_121228.log.json
Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

CoProtector Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

Zhensu Sun 1 Oct 26, 2021
The Pytorch code of "Joint Distribution Matters: Deep Brownian Distance Covariance for Few-Shot Classification", CVPR 2022 (Oral).

DeepBDC for few-shot learning        Introduction In this repo, we provide the implementation of the following paper: "Joint Distribution Matters: Dee

FeiLong 116 Dec 19, 2022
A method to perform unsupervised cross-region adaptation of crop classifiers trained with satellite image time series.

TimeMatch Official source code of TimeMatch: Unsupervised Cross-region Adaptation by Temporal Shift Estimation by Joachim Nyborg, Charlotte Pelletier,

Joachim Nyborg 17 Nov 01, 2022
Dynamic Multi-scale Filters for Semantic Segmentation (DMNet ICCV'2019)

Dynamic Multi-scale Filters for Semantic Segmentation (DMNet ICCV'2019) Introduction Official implementation of Dynamic Multi-scale Filters for Semant

23 Oct 21, 2022
NUANCED is a user-centric conversational recommendation dataset that contains 5.1k annotated dialogues and 26k high-quality user turns.

NUANCED: Natural Utterance Annotation for Nuanced Conversation with Estimated Distributions Overview NUANCED is a user-centric conversational recommen

Facebook Research 18 Dec 28, 2021
Online-compatible Unsupervised Non-resonant Anomaly Detection Repository

Online-compatible Unsupervised Non-resonant Anomaly Detection Repository Repository containing all scripts used in the studies of Online-compatible Un

0 Nov 09, 2021
LSUN Dataset Documentation and Demo Code

LSUN Please check LSUN webpage for more information about the dataset. Data Release All the images in one category are stored in one lmdb database fil

Fisher Yu 426 Jan 02, 2023
A platform for intelligent agent learning based on a 3D open-world FPS game developed by Inspir.AI.

Wilderness Scavenger: 3D Open-World FPS Game AI Challenge This is a platform for intelligent agent learning based on a 3D open-world FPS game develope

46 Nov 24, 2022
AWS provides a Python SDK, "Boto3" ,which can be used to access the AWS-account from the local.

Boto3 - The AWS SDK for Python Boto3 is the Amazon Web Services (AWS) Software Development Kit (SDK) for Python, which allows Python developers to wri

Shreyas Srivastava 1 Oct 25, 2021
A collection of resources and papers on Diffusion Models, a darkhorse in the field of Generative Models

This repository contains a collection of resources and papers on Diffusion Models and Score-based Models. If there are any missing valuable resources

5.1k Jan 08, 2023
CONditionals for Ordinal Regression and classification in PyTorch

CONDOR pytorch implementation for ordinal regression with deep neural networks. Documentation: https://GarrettJenkinson.github.io/condor_pytorch About

7 Jul 25, 2022
A Planar RGB-D SLAM which utilizes Manhattan World structure to provide optimal camera pose trajectory while also providing a sparse reconstruction containing points, lines and planes, and a dense surfel-based reconstruction.

ManhattanSLAM Authors: Raza Yunus, Yanyan Li and Federico Tombari ManhattanSLAM is a real-time SLAM library for RGB-D cameras that computes the camera

117 Dec 28, 2022
A Deep Learning Framework for Neural Derivative Hedging

NNHedge NNHedge is a PyTorch based framework for Neural Derivative Hedging. The following repository was implemented to ease the experiments of our pa

GUIJIN SON 17 Nov 14, 2022
NFT-Price-Prediction-CNN - Using visual feature extraction, prices of NFTs are predicted via CNN (Alexnet and Resnet) architectures.

NFT-Price-Prediction-CNN - Using visual feature extraction, prices of NFTs are predicted via CNN (Alexnet and Resnet) architectures.

5 Nov 03, 2022
一个多语言支持、易使用的 OCR 项目。An easy-to-use OCR project with multilingual support.

AgentOCR 简介 AgentOCR 是一个基于 PaddleOCR 和 ONNXRuntime 项目开发的一个使用简单、调用方便的 OCR 项目 本项目目前包含 Python Package 【AgentOCR】 和 OCR 标注软件 【AgentOCRLabeling】 使用指南 Pytho

AgentMaker 98 Nov 10, 2022
A tutorial on DataFrames.jl prepared for JuliaCon2021

JuliaCon2021 DataFrames.jl Tutorial This is a tutorial on DataFrames.jl prepared for JuliaCon2021. A video recording of the tutorial is available here

Bogumił Kamiński 106 Jan 09, 2023
Predicting Axillary Lymph Node Metastasis in Early Breast Cancer Using Deep Learning on Primary Tumor Biopsy Slides

Predicting Axillary Lymph Node Metastasis in Early Breast Cancer Using Deep Learning on Primary Tumor Biopsy Slides Project | This repo is the officia

CVSM Group - email: <a href=[email protected]"> 33 Dec 28, 2022
TCPNet - Temporal-attentive-Covariance-Pooling-Networks-for-Video-Recognition

Temporal-attentive-Covariance-Pooling-Networks-for-Video-Recognition This is an implementation of TCPNet. Introduction For video recognition task, a g

Zilin Gao 21 Dec 08, 2022
Title: Heart-Failure-Classification

This Notebook is based off an open source dataset available on where I have created models to classify patients who can potentially witness heart failure on the basis of various parameters. The best

Akarsh Singh 2 Sep 13, 2022
PushForKiCad - AISLER Push for KiCad EDA

AISLER Push for KiCad Push your layout to AISLER with just one click for instant

AISLER 31 Dec 29, 2022