A collection of loss functions for medical image segmentation

Related tags

Deep LearningSegLoss
Overview

Loss functions for image segmentation

A collection of loss functions for medical image segmentation

@article{LossOdyssey,
title = {Loss Odyssey in Medical Image Segmentation},
journal = {Medical Image Analysis},
volume = {71},
pages = {102035},
year = {2021},
author = {Jun Ma and Jianan Chen and Matthew Ng and Rui Huang and Yu Li and Chen Li and Xiaoping Yang and Anne L. Martel}
doi = {https://doi.org/10.1016/j.media.2021.102035},
url = {https://www.sciencedirect.com/science/article/pii/S1361841521000815}
}

Take-home message: compound loss functions are the most robust losses, especially for the highly imbalanced segmentation tasks.

Some recent side evidence: the winner in MICCAI 2020 HECKTOR Challenge used DiceFocal loss; the winner and runner-up in MICCAI 2020 ADAM Challenge used DiceTopK loss.

Date First Author Title Conference/Journal
20210330 Suprosanna Shit and Johannes C. Paetzold clDice - a Novel Topology-Preserving Loss Function for Tubular Structure Segmentation (keras and pytorch) CVPR 2021
20210318 Xiaoling Hu Topology-Aware Segmentation Using Discrete Morse Theory arxiv ICLR 2021
20210211 Hoel Kervadec Beyond pixel-wise supervision: semantic segmentation with higher-order shape descriptors Submitted to MIDL 2021
20210210 Rosana EL Jurdi A Surprisingly Effective Perimeter-based Loss for Medical Image Segmentation Submitted to MIDL 2021
20201222 Zeju Li Analyzing Overfitting Under Class Imbalance in Neural Networks for Image Segmentation TMI
20210129 Nick Byrne A Persistent Homology-Based Topological Loss Function for Multi-class CNN Segmentation of Cardiac MRI arxiv STACOM 2020
20201019 Hyunseok Seo Closing the Gap Between Deep Neural Network Modeling and Biomedical Decision-Making Metrics in Segmentation via Adaptive Loss Functions TMI
20200929 Stefan Gerl A Distance-Based Loss for Smooth and Continuous Skin Layer Segmentation in Optoacoustic Images MICCAI 2020
20200821 Nick Byrne A persistent homology-based topological loss function for multi-class CNN segmentation of cardiac MRI arxiv STACOM
20200720 Boris Shirokikh Universal Loss Reweighting to Balance Lesion Size Inequality in 3D Medical Image Segmentation arxiv (pytorch) MICCAI 2020
20200708 Gonglei Shi Marginal loss and exclusion loss for partially supervised multi-organ segmentation (arXiv) MedIA
20200706 Yuan Lan An Elastic Interaction-Based Loss Function for Medical Image Segmentation (pytorch) (arXiv) MICCAI 2020
20200615 Tom Eelbode Optimization for Medical Image Segmentation: Theory and Practice when evaluating with Dice Score or Jaccard Index TMI
20200605 Guotai Wang Noise-robust Dice loss: A Noise-robust Framework for Automatic Segmentation of COVID-19 Pneumonia Lesions from CT Images (pytorch) TMI
202004 J. H. Moltz Contour Dice coefficient (CDC) Loss: Learning a Loss Function for Segmentation: A Feasibility Study ISBI
201912 Yuan Xue Shape-Aware Organ Segmentation by Predicting Signed Distance Maps (arxiv) (pytorch) AAAI 2020
201912 Xiaoling Hu Topology-Preserving Deep Image Segmentation (paper) (pytorch) NeurIPS
201910 Shuai Zhao Region Mutual Information Loss for Semantic Segmentation (paper) (pytorch) NeurIPS 2019
201910 Shuai Zhao Correlation Maximized Structural Similarity Loss for Semantic Segmentation (paper) arxiv
201908 Pierre-AntoineGanaye Removing Segmentation Inconsistencies with Semi-Supervised Non-Adjacency Constraint (paper) (official pytorch) Medical Image Analysis
201906 Xu Chen Learning Active Contour Models for Medical Image Segmentation (paper) (official-keras) CVPR 2019
20190422 Davood Karimi Reducing the Hausdorff Distance in Medical Image Segmentation with Convolutional Neural Networks (paper) (pytorch) TMI 201907
20190417 Francesco Caliva Distance Map Loss Penalty Term for Semantic Segmentation (paper) MIDL 2019
20190411 Su Yang Major Vessel Segmentation on X-ray Coronary Angiography using Deep Networks with a Novel Penalty Loss Function (paper) MIDL 2019
20190405 Boah Kim Multiphase Level-Set Loss for Semi-Supervised and Unsupervised Segmentation with Deep Learning (paper) arxiv
201901 Seyed Raein Hashemi Asymmetric Loss Functions and Deep Densely Connected Networks for Highly Imbalanced Medical Image Segmentation: Application to Multiple Sclerosis Lesion Detection (paper) IEEE Access
201812 Hoel Kervadec Boundary loss for highly unbalanced segmentation (paper), (pytorch 1.0) MIDL 2019
201810 Nabila Abraham A Novel Focal Tversky loss function with improved Attention U-Net for lesion segmentation (paper) (keras) ISBI 2019
201809 Fabian Isensee CE+Dice: nnU-Net: Self-adapting Framework for U-Net-Based Medical Image Segmentation (paper) arxiv
20180831 Ken C. L. Wong 3D Segmentation with Exponential Logarithmic Loss for Highly Unbalanced Object Sizes (paper) MICCAI 2018
20180815 Wentao Zhu Dice+Focal: AnatomyNet: Deep Learning for Fast and Fully Automated Whole-volume Segmentation of Head and Neck Anatomy (arxiv) (pytorch) Medical Physics
201806 Javier Ribera Weighted Hausdorff Distance: Locating Objects Without Bounding Boxes (paper), (pytorch) CVPR 2019
201805 Saeid Asgari Taghanaki Combo Loss: Handling Input and Output Imbalance in Multi-Organ Segmentation (arxiv) (keras) Computerized Medical Imaging and Graphics
201709 S M Masudur Rahman AL ARIF Shape-aware deep convolutional neural network for vertebrae segmentation (paper) MICCAI 2017 Workshop
201708 Tsung-Yi Lin Focal Loss for Dense Object Detection (paper), (code) ICCV, TPAMI
20170711 Carole Sudre Generalised Dice overlap as a deep learning loss function for highly unbalanced segmentations (paper) DLMIA 2017
20170703 Lucas Fidon Generalised Wasserstein Dice Score for Imbalanced Multi-class Segmentation using Holistic Convolutional Networks (paper) MICCAI 2017 BrainLes
201705 Maxim Berman The Lovász-Softmax loss: A tractable surrogate for the optimization of the intersection-over-union measure in neural networks (paper), (code) CVPR 2018
201701 Seyed Sadegh Mohseni Salehi Tversky loss function for image segmentation using 3D fully convolutional deep networks (paper) MICCAI 2017 MLMI
201612 Md Atiqur Rahman Optimizing Intersection-Over-Union in Deep Neural Networks for Image Segmentation (paper) 2016 International Symposium on Visual Computing
201608 Michal Drozdzal "Dice Loss (without square)" The Importance of Skip Connections in Biomedical Image Segmentation (arxiv) DLMIA 2016
201606 Fausto Milletari "Dice Loss (with square)" V-net: Fully convolutional neural networks for volumetric medical image segmentation (arxiv), (caffe code) International Conference on 3D Vision
201605 Zifeng Wu TopK loss Bridging Category-level and Instance-level Semantic Image Segmentation (paper) arxiv
201511 Tom Brosch "Sensitivity-Specifity loss" Deep Convolutional Encoder Networks for Multiple Sclerosis Lesion Segmentation (paper) (code) MICCAI 2015
201505 Olaf Ronneberger "Weighted cross entropy" U-Net: Convolutional Networks for Biomedical Image Segmentation (paper) MICCAI 2015
201309 Gabriela Csurka What is a good evaluation measure for semantic segmentation? (paper) BMVA 2013

Most of the corresponding tensorflow code can be found here.

GuideDog is an AI/ML-based mobile app designed to assist the lives of the visually impaired, 100% voice-controlled

Guidedog Authors: Kyuhee Jo, Steven Gunarso, Jacky Wang, Raghav Sharma GuideDog is an AI/ML-based mobile app designed to assist the lives of the visua

Kyuhee Jo 5 Nov 24, 2021
Fast mesh denoising with data driven normal filtering using deep variational autoencoders

Fast mesh denoising with data driven normal filtering using deep variational autoencoders This is an implementation for the paper entitled "Fast mesh

9 Dec 02, 2022
A multi-functional library for full-stack Deep Learning. Simplifies Model Building, API development, and Model Deployment.

chitra What is chitra? chitra (चित्र) is a multi-functional library for full-stack Deep Learning. It simplifies Model Building, API development, and M

Aniket Maurya 210 Dec 21, 2022
PyTorch Implementation of ByteDance's Cross-speaker Emotion Transfer Based on Speaker Condition Layer Normalization and Semi-Supervised Training in Text-To-Speech

Cross-Speaker-Emotion-Transfer - PyTorch Implementation PyTorch Implementation of ByteDance's Cross-speaker Emotion Transfer Based on Speaker Conditio

Keon Lee 114 Jan 08, 2023
🤗 Transformers: State-of-the-art Natural Language Processing for Pytorch, TensorFlow, and JAX.

English | 简体中文 | 繁體中文 State-of-the-art Natural Language Processing for Jax, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrained mo

Hugging Face 77.2k Jan 02, 2023
시각 장애인을 위한 스마트 지팡이에 활용될 딥러닝 모델 (DL Model Repo)

SmartCane-DL-Model Smart Cane using semantic segmentation 참고한 Github repositoy 🔗 https://github.com/JunHyeok96/Road-Segmentation.git 데이터셋 🔗 https://

반드시 졸업한다 (Team Just Graduate) 4 Dec 03, 2021
Tensorflow solution of NER task Using BiLSTM-CRF model with Google BERT Fine-tuning And private Server services

Tensorflow solution of NER task Using BiLSTM-CRF model with Google BERT Fine-tuning

MaCan 4.2k Dec 29, 2022
Styled text-to-drawing synthesis method. Featured at the 2021 NeurIPS Workshop on Machine Learning for Creativity and Design

Styled text-to-drawing synthesis method. Featured at the 2021 NeurIPS Workshop on Machine Learning for Creativity and Design

Peter Schaldenbrand 247 Dec 23, 2022
A micro-game "flappy bird".

1-o-flappy A micro-game "flappy bird". Gameplays The game will be installed at /usr/bin . The name of it is "1-o-flappy". You can type "1-o-flappy" to

1 Nov 06, 2021
List of awesome things around semantic segmentation 🎉

Awesome Semantic Segmentation List of awesome things around semantic segmentation 🎉 Semantic segmentation is a computer vision task in which we label

Dam Minh Tien 18 Nov 26, 2022
Avatarify Python - Avatars for Zoom, Skype and other video-conferencing apps.

Avatarify Python - Avatars for Zoom, Skype and other video-conferencing apps.

Ali Aliev 15.3k Jan 05, 2023
An algorithm that handles large-scale aerial photo co-registration, based on SURF, RANSAC and PyTorch autograd.

An algorithm that handles large-scale aerial photo co-registration, based on SURF, RANSAC and PyTorch autograd.

Luna Yue Huang 41 Oct 29, 2022
Degree-Quant: Quantization-Aware Training for Graph Neural Networks.

Degree-Quant This repo provides a clean re-implementation of the code associated with the paper Degree-Quant: Quantization-Aware Training for Graph Ne

35 Oct 07, 2022
Survival analysis in Python

What is survival analysis and why should I learn it? Survival analysis was originally developed and applied heavily by the actuarial and medical commu

Cameron Davidson-Pilon 2k Jan 08, 2023
AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty

AugMix Introduction We propose AugMix, a data processing technique that mixes augmented images and enforces consistent embeddings of the augmented ima

Google Research 876 Dec 17, 2022
A Fast and Accurate One-Stage Approach to Visual Grounding, ICCV 2019 (Oral)

One-Stage Visual Grounding ***** New: Our recent work on One-stage VG is available at ReSC.***** A Fast and Accurate One-Stage Approach to Visual Grou

Zhengyuan Yang 118 Dec 05, 2022
Implementation of paper "DCS-Net: Deep Complex Subtractive Neural Network for Monaural Speech Enhancement"

DCS-Net This is the implementation of "DCS-Net: Deep Complex Subtractive Neural Network for Monaural Speech Enhancement" Steps to run the model Edit V

Jack Walters 10 Apr 04, 2022
Unofficial implementation of MLP-Mixer: An all-MLP Architecture for Vision

MLP-Mixer: An all-MLP Architecture for Vision This repo contains PyTorch implementation of MLP-Mixer: An all-MLP Architecture for Vision. Usage : impo

Rishikesh (ऋषिकेश) 175 Dec 23, 2022
Official code release for: EditGAN: High-Precision Semantic Image Editing

Official code release for: EditGAN: High-Precision Semantic Image Editing

565 Jan 05, 2023
The code for the CVPR 2021 paper Neural Deformation Graphs, a novel approach for globally-consistent deformation tracking and 3D reconstruction of non-rigid objects.

Neural Deformation Graphs Project Page | Paper | Video Neural Deformation Graphs for Globally-consistent Non-rigid Reconstruction Aljaž Božič, Pablo P

Aljaz Bozic 134 Dec 16, 2022