Automatic caption evaluation metric based on typicality analysis.

Related tags

Deep LearningSMURF
Overview

SeMantic and linguistic UndeRstanding Fusion (SMURF)

made-with-python License: MIT

Automatic caption evaluation metric described in the paper "SMURF: SeMantic and linguistic UndeRstanding Fusion for Caption Evaluation via Typicality Analysis" (ACL 2021).

arXiv: https://arxiv.org/abs/2106.01444

ACL Anthology: https://aclanthology.org/2021.acl-long.175/

Overview

SMURF is an automatic caption evaluation metric that combines a novel semantic evaluation algorithm (SPARCS) and novel fluency evaluation algorithms (SPURTS and MIMA) for both caption-level and system-level analysis. These evaluations were developed to be generalizable and as a result demonstrate a high correlation with human judgment across many relevant datasets. See paper for more details.

Requirements

You can run requirements/install.sh to quickly install all the requirements in an Anaconda environment. The requirements are:

  • python 3
  • torch>=1.0.0
  • numpy
  • nltk>=3.5.0
  • pandas>=1.0.1
  • matplotlib
  • transformers>=3.0.0
  • shapely
  • sklearn
  • sentencepiece

Usage

./smurf_example.py provides working examples of the following functions:

Caption-Level Scoring

Returns a dictionary with scores for semantic similarity between reference captions and candidate captions (SPARCS), style/diction quality of candidate text (SPURTS), grammar outlier penalty of candidate text (MIMA), and the fusion of these scores (SMURF). Input sentences should be preprocessed before being fed into the smurf_eval_captions object as shown in the example. Evaluations with SPARCS require a list of reference sentences while evaluations with SPURTS and MIMA do not use reference sentences.

System-Level Analysis

After reading in and standardizing caption-level scores, generates a plot that can be used to give an overall evaluation of captioner performances along with relevant system-level scores (intersection with reference captioner and total grammar outlier penalties) for each captioner. An example of such a plot is shown below:

The number of captioners you are comparing should be specified when instantiating a smurf_system_analysis object. In order to generate the plot correctly, the captions fed into the caption-level scoring for each candidate captioner (C1, C2,...) should be organized in the following format with the C1 captioner as the ground truth:

[C1 image 1 output, C2 image 1 output,..., C1 image 2 output, C2 image 2 output,...].

Author/Maintainer:

Joshua Feinglass (https://scholar.google.com/citations?user=V2h3z7oAAAAJ&hl=en)

If you find this repo useful, please cite:

@inproceedings{feinglass2021smurf,
  title={SMURF: SeMantic and linguistic UndeRstanding Fusion for Caption Evaluation via Typicality Analysis},
  author={Joshua Feinglass and Yezhou Yang},
  booktitle={Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics},
  year={2021},
  url={https://aclanthology.org/2021.acl-long.175/}
}
Owner
Joshua Feinglass
Joshua Feinglass
SparseML is a libraries for applying sparsification recipes to neural networks with a few lines of code, enabling faster and smaller models

SparseML is a toolkit that includes APIs, CLIs, scripts and libraries that apply state-of-the-art sparsification algorithms such as pruning and quantization to any neural network. General, recipe-dri

Neural Magic 1.5k Dec 30, 2022
SNE-RoadSeg in PyTorch, ECCV 2020

SNE-RoadSeg Introduction This is the official PyTorch implementation of SNE-RoadSeg: Incorporating Surface Normal Information into Semantic Segmentati

242 Dec 20, 2022
3D Pose Estimation for Vehicles

3D Pose Estimation for Vehicles Introduction This work generates 4 key-points and 2 key-edges from vertices and edges of vehicles as ground truth. The

Jingyi Wang 1 Nov 01, 2021
LexGLUE: A Benchmark Dataset for Legal Language Understanding in English

LexGLUE: A Benchmark Dataset for Legal Language Understanding in English ⚖️ 🏆 🧑‍🎓 👩‍⚖️ Dataset Summary Inspired by the recent widespread use of th

95 Dec 08, 2022
The Official PyTorch Implementation of DiscoBox.

DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision Paper | Project page | Demo (Youtube) | Demo (Bilib

NVIDIA Research Projects 89 Jan 09, 2023
ObsPy: A Python Toolbox for seismology/seismological observatories.

ObsPy is an open-source project dedicated to provide a Python framework for processing seismological data. It provides parsers for common file formats

ObsPy 979 Jan 07, 2023
Yolo ros - YOLO-ROS for HUAWEI ATLAS200

YOLO-ROS YOLO-ROS for NVIDIA YOLO-ROS for HUAWEI ATLAS200, please checkout for b

ChrisLiu 5 Oct 18, 2022
Source code for 2021 ICCV paper "In-the-Wild Single Camera 3D Reconstruction Through Moving Water Surfaces"

In-the-Wild Single Camera 3D Reconstruction Through Moving Water Surfaces This is the PyTorch implementation for 2021 ICCV paper "In-the-Wild Single C

27 Dec 06, 2022
PyTorch implementation of our paper: Decoupling and Recoupling Spatiotemporal Representation for RGB-D-based Motion Recognition

Decoupling and Recoupling Spatiotemporal Representation for RGB-D-based Motion Recognition, arxiv This is a PyTorch implementation of our paper. 1. Re

DamoCV 11 Nov 19, 2022
General Multi-label Image Classification with Transformers

General Multi-label Image Classification with Transformers Jack Lanchantin, Tianlu Wang, Vicente Ordóñez Román, Yanjun Qi Conference on Computer Visio

QData 154 Dec 21, 2022
Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20. model in Tensorflow Lite.

TFLite-msg_chn_wacv20-depth-completion Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20. model

Ibai Gorordo 2 Oct 04, 2021
PyTorch implementation for 3D human pose estimation

Towards 3D Human Pose Estimation in the Wild: a Weakly-supervised Approach This repository is the PyTorch implementation for the network presented in:

Xingyi Zhou 579 Dec 22, 2022
Pytorch implementation of paper "Learning Co-segmentation by Segment Swapping for Retrieval and Discovery"

SegSwap Pytorch implementation of paper "Learning Co-segmentation by Segment Swapping for Retrieval and Discovery" [PDF] [Project page] If our project

xshen 41 Dec 10, 2022
Official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo'

IterMVS official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo' Introduction IterMVS is a novel lear

Fangjinhua Wang 127 Jan 04, 2023
Sum-Product Probabilistic Language

Sum-Product Probabilistic Language SPPL is a probabilistic programming language that delivers exact solutions to a broad range of probabilistic infere

MIT Probabilistic Computing Project 57 Nov 17, 2022
Cupytorch - A small framework mimics PyTorch using CuPy or NumPy

CuPyTorch CuPyTorch是一个小型PyTorch,名字来源于: 不同于已有的几个使用NumPy实现PyTorch的开源项目,本项目通过CuPy支持

Xingkai Yu 23 Aug 17, 2022
Flow is a computational framework for deep RL and control experiments for traffic microsimulation.

Flow Flow is a computational framework for deep RL and control experiments for traffic microsimulation. See our website for more information on the ap

867 Jan 02, 2023
Implementation of Deep Deterministic Policy Gradiet Algorithm in Tensorflow

ddpg-aigym Deep Deterministic Policy Gradient Implementation of Deep Deterministic Policy Gradiet Algorithm (Lillicrap et al.arXiv:1509.02971.) in Ten

Steven Spielberg P 247 Dec 07, 2022
Program your own vulkan.gpuinfo.org query in Python. Used to determine baseline hardware for WebGPU.

query-gpuinfo-data License This software is not presently released under a license. The data in data/ is obtained under CC BY 4.0 as specified there.

Kai Ninomiya 5 Jul 18, 2022
Calculates carbon footprint based on fuel mix and discharge profile at the utility selected. Can create graphs and tabular output for fuel mix based on input file of series of power drawn over a period of time.

carbon-footprint-calculator Conda distribution ~/anaconda3/bin/conda install anaconda-client conda-build ~/anaconda3/bin/conda config --set anaconda_u

Seattle university Renewable energy research 7 Sep 26, 2022