Reproducible research and reusable acyclic workflows in Python. Execute code on HPC systems as if you executed them on your personal computer!

Overview

Reproducible research and reusable acyclic workflows in Python. Execute code on HPC systems as if you executed them on your machine!

Motivation

Would you like fully reproducible research or reusable workflows that seamlessly run on HPC clusters? Tired of writing and managing large Slurm submission scripts? Do you have comment out large parts of your pipeline whenever its results have been generated? Don't waste your precious time! awflow allows you to directly describe complex pipelines in Python, that run on your personal computer and large HPC clusters.

import awflow as aw
import glob
import numpy as np

n = 100000
tasks = 10

@aw.cpus(4)  # Request 4 CPU cores
@aw.memory("4GB")  # Request 4 GB of RAM
@aw.postcondition(aw.num_files('pi-*.npy', 10))
@aw.tasks(tasks)  # Requests '10' parallel tasks
def estimate(task_index):
    print("Executing task {} / {}.".format(task_index + 1, tasks))
    x = np.random.random(n)
    y = np.random.random(n)
    pi_estimate = (x**2 + y**2 <= 1)
    np.save('pi-' + str(task_index) + '.npy', pi_estimate)

@aw.dependency(estimate)
def merge():
    files = glob.glob('pi-*.npy')
    stack = np.vstack([np.load(f) for f in files])
    np.save('pi.npy', stack.sum() / (n * tasks) * 4)

@aw.dependency(merge)
@aw.postcondition(aw.exists('pi.npy'))  # Prevent execution if postcondition is satisfied.
def show_result():
    print("Pi:", np.load('pi.npy'))

aw.execute()

Executing this Python program (python examples/pi.py) on a Slurm HPC cluster will launch the following jobs.

           1803299       all    merge username PD       0:00      1 (Dependency)
           1803300       all show_res username PD       0:00      1 (Dependency)
     1803298_[6-9]       all estimate username PD       0:00      1 (Resources)
         1803298_3       all estimate username  R       0:01      1 compute-xx
         1803298_4       all estimate username  R       0:01      1 compute-xx
         1803298_5       all estimate username  R       0:01      1 compute-xx

Check the examples directory and guide to explore the functionality.

Installation

The awflow package is available on PyPi, which means it is installable via pip.

[email protected]:~ $ pip install awflow

If you would like the latest features, you can install it using this Git repository.

[email protected]:~ $ pip install git+https://github.com/JoeriHermans/awflow

If you would like to run the examples as well, be sure to install the optional example dependencies.

[email protected]:~ $ pip install 'awflow[examples]'

Usage

The core concept in awflow is the notion of a task. Essentially, this is a method that will be executed in your workflow. Tasks are represented as a node in a directed graph. In doing so, we can easily specify (task) dependencies. In addition, we can attribute properties to tasks using decorators defined by awflow. This allows you to specify things like CPU cores, GPU's and even postconditions. Follow the guide for additional examples and descriptions.

Decorators

TODO

Workflow storage

By default, workflows will be stored in the current working direction within the ./workflows folder. If desired, a central storage directory can be used by specifying the AWFLOW_STORAGE environment variable.

The awflow utility

This package comes with a utility program to manage submitted, failed, and pending workflows. Its functionality can be inspected by executing awflow -h. In addition, to streamline the management of workflows, we recommend to give every workflow as specific name to easily identify a workflow. This name does not have to be unique for every distinct workflow execution.

aw.execute(name=r'Some name')

Executing awflow list after submitting the pipeline with python pipeline.py [args] will yield.

[email protected]:~ $ awflow list
  Postconditions      Status      Backend     Name          Location
 ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
  50%                 Running     Slurm       Some name     /home/jhermans/awflow/examples/.workflows/tmpntmc712a

Modules

[email protected]:~ $ awflow cancel [workflow] TODO

[email protected]:~ $ awflow clear TODO

[email protected]:~ $ awflow list TODO

[email protected]:~ $ awflow inspect [workflow] TODO

Contributing

See CONTRIBUTING.md.

Roadmap

  • Documentation
  • README

License

As described in the LICENSE file.

You might also like...
FAIR's research platform for object detection research, implementing popular algorithms like Mask R-CNN and RetinaNet.
FAIR's research platform for object detection research, implementing popular algorithms like Mask R-CNN and RetinaNet.

Detectron is deprecated. Please see detectron2, a ground-up rewrite of Detectron in PyTorch. Detectron Detectron is Facebook AI Research's software sy

A modular framework for vision & language multimodal research from Facebook AI Research (FAIR)

MMF is a modular framework for vision and language multimodal research from Facebook AI Research. MMF contains reference implementations of state-of-t

Lightweight, Python library for fast and reproducible experimentation :microscope:

Steppy What is Steppy? Steppy is a lightweight, open-source, Python 3 library for fast and reproducible experimentation. Steppy lets data scientist fo

Open-sourcing the Slates Dataset for recommender systems research
Open-sourcing the Slates Dataset for recommender systems research

FINN.no Recommender Systems Slate Dataset This repository accompany the paper "Dynamic Slate Recommendation with Gated Recurrent Units and Thompson Sa

Research on controller area network Intrusion Detection Systems

Group members information Member 1: Lixue Liang Member 2: Yuet Lee Chan Member 3: Xinruo Zhang Member 4: Yifei Han User Manual Generate Attack Packets

GluonMM is a library of transformer models for computer vision and multi-modality research

GluonMM is a library of transformer models for computer vision and multi-modality research. It contains reference implementations of widely adopted baseline models and also research work from Amazon Research.

BisQue is a web-based platform designed to provide researchers with organizational and quantitative analysis tools for 5D image data. Users can extend BisQue by implementing containerized ML workflows.
BisQue is a web-based platform designed to provide researchers with organizational and quantitative analysis tools for 5D image data. Users can extend BisQue by implementing containerized ML workflows.

Overview BisQue is a web-based platform specifically designed to provide researchers with organizational and quantitative analysis tools for up to 5D

Open-L2O: A Comprehensive and Reproducible Benchmark for Learning to Optimize Algorithms
Open-L2O: A Comprehensive and Reproducible Benchmark for Learning to Optimize Algorithms

Open-L2O This repository establishes the first comprehensive benchmark efforts of existing learning to optimize (L2O) approaches on a number of proble

MQBench: Towards Reproducible and Deployable Model Quantization Benchmark

MQBench: Towards Reproducible and Deployable Model Quantization Benchmark We propose a benchmark to evaluate different quantization algorithms on vari

Comments
  • [BUG] conda activation crashes standalone execution

    [BUG] conda activation crashes standalone execution

    Issue description

    In the standalone backend on Unix systems, the os.system(command) used here

    https://github.com/JoeriHermans/awflow/blob/1fcf255debfbc18d39a6b2baa387bbc85050209d/awflow/backends/standalone/executor.py#L53-L60

    actually calls /bin/sh. For some OS, like Ubuntu, sh links to dash which does not support the scripting features required by conda activations. This results in runtime errors like

    sh: 5: /home/username/miniconda3/envs/envname/etc/conda/activate.d/activate-binutils_linux-64.sh: Syntax error: "(" unexpected
    

    Proposed solution

    A solution would be to change the shell with which the commands are called. This is possible thanks to the subprocess package. A good default would be bash as almost all Unix systems use it.

        if node.tasks > 1:
            for task_index in range(node.tasks):
                task_command = command + ' ' + str(task_index)
                return_code = subprocess.call(task_command, shell=True, executable='/bin/bash')
        else:
            return_code = subprocess.call(command, shell=True, executable='/bin/bash')
    

    One could also add a way to change this default. Additionally, wouldn't it be better to launch the tasks as background jobs for the standalone backend (simply add & at the end of the command) ?

    bug 
    opened by francois-rozet 1
  • [BUG] pip install fails for version 0.0.4

    [BUG] pip install fails for version 0.0.4

    $ pip install awflow==0.0.4
    Collecting awflow==0.0.4
      Using cached awflow-0.0.4.tar.gz (19 kB)
        ERROR: Command errored out with exit status 1:
         command: /home/francois/awf/bin/python -c 'import sys, setuptools, tokenize; sys.argv[0] = '"'"'/tmp/pip-install-ou4rxs3q/awflow/setup.py'"'"'; __file__='"'"'/tmp/pip-install-ou4rxs3q/awflow/setup.py'"'"';f=getattr(tokenize, '"'"'open'"'"', open)(__file__);code=f.read().replace('"'"'\r\n'"'"', '"'"'\n'"'"');f.close();exec(compile(code, __file__, '"'"'exec'"'"'))' egg_info --egg-base /tmp/pip-install-ou4rxs3q/awflow/pip-egg-info
             cwd: /tmp/pip-install-ou4rxs3q/awflow/
        Complete output (7 lines):
        Traceback (most recent call last):
          File "<string>", line 1, in <module>
          File "/tmp/pip-install-ou4rxs3q/awflow/setup.py", line 54, in <module>
            'examples': _load_requirements('requirements_examples.txt')
          File "/tmp/pip-install-ou4rxs3q/awflow/setup.py", line 17, in _load_requirements
            with open(file_name, 'r') as file:
        FileNotFoundError: [Errno 2] No such file or directory: 'requirements_examples.txt'
        ----------------------------------------
    ERROR: Command errored out with exit status 1: python setup.py egg_info Check the logs for full command output.
    
    bug high priority 
    opened by francois-rozet 1
  • Jobs submitted with awflow doesn't work with Multiprocessing.pool

    Jobs submitted with awflow doesn't work with Multiprocessing.pool

    Hi,

    I tried submitting a few jobs with awflow but somehow each time I run it with slurm backend it never produces a pool.starmap and the process simply times out on cluster. `0 0 8196756 5.1g 85664 S 0.0 1.0 2:12.27 python 790517 rnath 20 0 7953388 5.0g 12020 S 0.0 1.0 0:01.66 python

    790518 rnath 20 0 7953388 5.0g 12020 S 0.0 1.0 0:01.45 python

    790519 rnath 20 0 7953388 5.0g 12020 S 0.0 1.0 0:01.76 python

    790520 rnath 20 0 7953388 5.0g 12020 S 0.0 1.0 0:02.02 python

    790521 rnath 20 0 7953388 5.0g 12020 S 0.0 1.0 0:01.99 python `

    An example of what happens in the cluster where the processes are spawned but each process uses 0 % of the cpu slurmstepd: error: *** JOB 1933332 ON compute-04 CANCELLED AT 2022-04-08T19:33:26 DUE TO TIME LIMIT ***

    opened by digirak 0
Releases(0.1.0)
Owner
Joeri Hermans
Combining Machine Learning and Physics to automate science.
Joeri Hermans
Improving Object Detection by Estimating Bounding Box Quality Accurately

Improving Object Detection by Estimating Bounding Box Quality Accurately Abstrac

2 Apr 14, 2022
Classifies galaxy morphology with Bayesian CNN

Zoobot Zoobot classifies galaxy morphology with deep learning. This code will let you: Reproduce and improve the Galaxy Zoo DECaLS automated classific

Mike Walmsley 39 Dec 20, 2022
A PyTorch Implementation of ViT (Vision Transformer)

ViT - Vision Transformer This is an implementation of ViT - Vision Transformer by Google Research Team through the paper "An Image is Worth 16x16 Word

Quan Nguyen 7 May 11, 2022
Static-test - A playground to play with ideas related to testing the comparability of the code

Static test playground ⚠️ The code is just an experiment. Compiles and runs on U

Igor Bogoslavskyi 4 Feb 18, 2022
Face-Recognition-Attendence-System - This face recognition Attendence system using Python

Face-Recognition-Attendence-System I have developed this face recognition Attend

Riya Gupta 4 May 10, 2022
Code release for our paper, "SimNet: Enabling Robust Unknown Object Manipulation from Pure Synthetic Data via Stereo"

SimNet: Enabling Robust Unknown Object Manipulation from Pure Synthetic Data via Stereo Thomas Kollar, Michael Laskey, Kevin Stone, Brijen Thananjeyan

68 Dec 14, 2022
MaskTrackRCNN for video instance segmentation based on mmdetection

MaskTrackRCNN for video instance segmentation Introduction This repo serves as the official code release of the MaskTrackRCNN model for video instance

411 Jan 05, 2023
This repo includes the CUB-GHA (Gaze-based Human Attention) dataset and code of the paper "Human Attention in Fine-grained Classification".

HA-in-Fine-Grained-Classification This repo includes the CUB-GHA (Gaze-based Human Attention) dataset and code of the paper "Human Attention in Fine-g

16 Oct 29, 2022
PyTorch implementation for OCT-GAN Neural ODE-based Conditional Tabular GANs (WWW 2021)

OCT-GAN: Neural ODE-based Conditional Tabular GANs (OCT-GAN) Code for reproducing the experiments in the paper: Jayoung Kim*, Jinsung Jeon*, Jaehoon L

BigDyL 7 Dec 27, 2022
Unofficial PyTorch Implementation for HifiFace (https://arxiv.org/abs/2106.09965)

HifiFace — Unofficial Pytorch Implementation Image source: HifiFace: 3D Shape and Semantic Prior Guided High Fidelity Face Swapping (figure 1, pg. 1)

MINDs Lab 218 Jan 04, 2023
AntroPy: entropy and complexity of (EEG) time-series in Python

AntroPy is a Python 3 package providing several time-efficient algorithms for computing the complexity of time-series. It can be used for example to e

Raphael Vallat 153 Dec 27, 2022
A tutorial on DataFrames.jl prepared for JuliaCon2021

JuliaCon2021 DataFrames.jl Tutorial This is a tutorial on DataFrames.jl prepared for JuliaCon2021. A video recording of the tutorial is available here

Bogumił Kamiński 106 Jan 09, 2023
Bayes-Newton—A Gaussian process library in JAX, with a unifying view of approximate Bayesian inference as variants of Newton's algorithm.

Bayes-Newton Bayes-Newton is a library for approximate inference in Gaussian processes (GPs) in JAX (with objax), built and actively maintained by Wil

AaltoML 165 Nov 27, 2022
Code for Environment Inference for Invariant Learning (ICML 2020 UDL Workshop Paper)

Environment Inference for Invariant Learning This code accompanies the paper Environment Inference for Invariant Learning, which appears at ICML 2021.

Elliot Creager 40 Dec 09, 2022
[ICML 2020] "When Does Self-Supervision Help Graph Convolutional Networks?" by Yuning You, Tianlong Chen, Zhangyang Wang, Yang Shen

When Does Self-Supervision Help Graph Convolutional Networks? PyTorch implementation for When Does Self-Supervision Help Graph Convolutional Networks?

Shen Lab at Texas A&M University 106 Nov 11, 2022
RARA: Zero-shot Sim2Real Visual Navigation with Following Foreground Cues

RARA: Zero-shot Sim2Real Visual Navigation with Following Foreground Cues FGBG (foreground-background) pytorch package for defining and training model

Klaas Kelchtermans 1 Jun 02, 2022
Adversarial Self-Defense for Cycle-Consistent GANs

Adversarial Self-Defense for Cycle-Consistent GANs This is the official implementation of the CycleGAN robust to self-adversarial attacks used in pape

Dina Bashkirova 10 Oct 10, 2022
The code for "Deep Level Set for Box-supervised Instance Segmentation in Aerial Images".

Deep Levelset for Box-supervised Instance Segmentation in Aerial Images Wentong Li, Yijie Chen, Wenyu Liu, Jianke Zhu* Any questions or discussions ar

sunshine.lwt 112 Jan 05, 2023
Out-of-distribution detection using the pNML regret. NeurIPS2021

OOD Detection Load conda environment conda env create -f environment.yml or install requirements: while read requirement; do conda install --yes $requ

Koby Bibas 23 Dec 02, 2022
Neural Re-rendering for Full-frame Video Stabilization

NeRViS: Neural Re-rendering for Full-frame Video Stabilization Project Page | Video | Paper | Google Colab Setup Setup environment for [Yu and Ramamoo

Yu-Lun Liu 9 Jun 17, 2022