Leveraging Two Types of Global Graph for Sequential Fashion Recommendation, ICMR 2021

Related tags

Deep LearningDGSR
Overview

This is the repo for the paper: Leveraging Two Types of Global Graph for Sequential Fashion Recommendation

Requirements

  1. OS: Ubuntu 16.04 or higher version
  2. python3.7
  3. Supported (tested) CUDA Versions: V10.2
  4. python modules: refer to the modules in requirements.txt

Code Structure

  1. The entry script for training and evaluation is: train.py
  2. The config file is: config.yaml
  3. The script for data preprocess and dataloader: utility.py
  4. The model folder: ./model/.
  5. The experimental logs in tensorboard-format are saved in ./logs.
  6. The experimental logs in txt-format are saved in ./performance.
  7. The best model for each experimental setting is saved in ./model_saves.
  8. The recommendation results in the evaluation are recorded in ./results.
  9. The ./logs, ./performance, ./model_saves, ./results files will be generated automatically when first time runing the codes.
  10. The script get_all_the_res.py is used to print the performance of all the trained and tested models on the screen.

How to Run

  1. Download the dataset, decompress it and put it in the top directory with the following command. Note that the downloaded files include two datasets ulilized in the paper: iFashion and amazon_fashion.

    tar zxvf dgsr_dataset.tar.gz. 
    
  2. Settings in the configure file config.yaml are basic experimental settings, which are usually fixed in the experiments. To tune other hyper-parameters, you can use command line to pass the parameters. The command line supported hyper-parameters including: the dataset (-d), sequence length (-l) and embedding size (-e). You can also specify which gpu device (-g) to use in the experiments.

  3. Run the training and evaluation with the specified hyper-parameters by the command:

    python train.py -d=ifashion -l=5 -e=50 -g=0. 
    
  4. During the training, you can monitor the training loss and the evaluation performance by Tensorboard. You can get into ./logs to track the curves of your training and evaluation with the following command:

    tensorboard --host="your host ip" --logdir=./
    
  5. The performance of the model is saved in ./performance. You can get into the folder and check the detailed training process of any finished experiments (Compared with the tensorboard log save in ./logs, it is just the txt-version human-readable training log). To quickly check the results for all implemented experiments, you can also print the results of all experiments in a table format on the terminal screen by running:

    python get_all_the_res.py
    
  6. The best model will be saved in ./model_saves.

Owner
Yujuan Ding
Yujuan Ding
A PyTorch Implementation of "SINE: Scalable Incomplete Network Embedding" (ICDM 2018).

Scalable Incomplete Network Embedding ⠀⠀ A PyTorch implementation of Scalable Incomplete Network Embedding (ICDM 2018). Abstract Attributed network em

Benedek Rozemberczki 69 Sep 22, 2022
Capsule endoscopy detection DACON challenge

capsule_endoscopy_detection (DACON Challenge) Overview Yolov5, Yolor, mmdetection기반의 모델을 사용 (총 11개 모델 앙상블) 모든 모델은 학습 시 Pretrained Weight을 yolov5, yolo

MAILAB 11 Nov 25, 2022
Gans-in-action - Companion repository to GANs in Action: Deep learning with Generative Adversarial Networks

GANs in Action by Jakub Langr and Vladimir Bok List of available code: Chapter 2: Colab, Notebook Chapter 3: Notebook Chapter 4: Notebook Chapter 6: C

GANs in Action 914 Dec 21, 2022
Introduction to Statistics and Basics of Mathematics for Data Science - The Hacker's Way

HackerMath for Machine Learning “Study hard what interests you the most in the most undisciplined, irreverent and original manner possible.” ― Richard

Amit Kapoor 1.4k Dec 22, 2022
DecoupledNet is semantic segmentation system which using heterogeneous annotations

DecoupledNet: Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation Created by Seunghoon Hong, Hyeonwoo Noh and Bohyung Han at POSTE

Hyeonwoo Noh 74 Sep 22, 2021
Python KNN model: Predicting a probability of getting a work visa. Tableau: Non-immigrant visas over the years.

The value of international students to the United States. Probability of getting a non-immigrant visa. Project timeline: Jan 2021 - April 2021 Project

Zinaida Dvoskina 2 Nov 21, 2021
This is the paddle code for SeBoW(Self-Born wiring for neural trees), a kind of neural tree born form a large search space

SeBoW: Self-Born Wiring for neural trees(PaddlePaddle version) This is the paddle code for SeBoW(Self-Born wiring for neural trees), a kind of neural

HollyLee 13 Dec 08, 2022
Toontown House CT Edition

Toontown House: Classic Toontown House Classic source that should just work. ❓ W

Open Source Toontown Servers 5 Jan 09, 2022
UMich 500-Level Mobile Robotics Course

MOBILE ROBOTICS: METHODS & ALGORITHMS - WINTER 2022 University of Michigan - NA 568/EECS 568/ROB 530 For slides, lecture notes, and example codes, see

393 Dec 29, 2022
Python inverse kinematics for your robot model based on Pinocchio.

Python inverse kinematics for your robot model based on Pinocchio.

Stéphane Caron 50 Dec 22, 2022
Exe-to-xlsm - Simple script to create VBscript of exe and inject to xlsm

🎁 Exe To Office Executable file injection to Office documents: .xlsm, .docm, .p

3 Jan 25, 2022
Dynamica causal Bayesian optimisation

Dynamic Causal Bayesian Optimization This is a Python implementation of Dynamic Causal Bayesian Optimization as presented at NeurIPS 2021. Abstract Th

nd308 18 Nov 22, 2022
Official implementation for paper: A Latent Transformer for Disentangled Face Editing in Images and Videos.

A Latent Transformer for Disentangled Face Editing in Images and Videos Official implementation for paper: A Latent Transformer for Disentangled Face

InterDigital 108 Dec 09, 2022
ChainerRL is a deep reinforcement learning library built on top of Chainer.

ChainerRL and PFRL ChainerRL (this repository) is a deep reinforcement learning library that implements various state-of-the-art deep reinforcement al

Chainer 1.1k Jan 01, 2023
Funnels: Exact maximum likelihood with dimensionality reduction.

Funnels This repository contains the code needed to reproduce the experiments from the paper: Funnels: Exact maximum likelihood with dimensionality re

2 Apr 21, 2022
Deep learning models for classification of 15 common weeds in the southern U.S. cotton production systems.

CottonWeeds Deep learning models for classification of 15 common weeds in the southern U.S. cotton production systems. requirements pytorch torchsumma

Dong Chen 8 Jun 07, 2022
Riemannian Geometry for Molecular Surface Approximation (RGMolSA)

Riemannian Geometry for Molecular Surface Approximation (RGMolSA) Introduction Ligand-based virtual screening aims to reduce the cost and duration of

11 Nov 15, 2022
AgML is a comprehensive library for agricultural machine learning

AgML is a comprehensive library for agricultural machine learning. Currently, AgML provides access to a wealth of public agricultural datasets for common agricultural deep learning tasks.

Plant AI and Biophysics Lab 1 Jul 07, 2022
Bonnet: An Open-Source Training and Deployment Framework for Semantic Segmentation in Robotics.

Bonnet: An Open-Source Training and Deployment Framework for Semantic Segmentation in Robotics. By Andres Milioto @ University of Bonn. (for the new P

Photogrammetry & Robotics Bonn 314 Dec 30, 2022
Bio-Computing Platform Featuring Large-Scale Representation Learning and Multi-Task Deep Learning “螺旋桨”生物计算工具集

English | 简体中文 Latest News 2021.10.25 Paper "Docking-based Virtual Screening with Multi-Task Learning" is accepted by BIBM 2021. 2021.07.29 PaddleHeli

633 Jan 04, 2023