Official PyTorch code for Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021)

Overview

Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021)

This repository is the official PyTorch implementation of Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (arxiv, supp).

🚀 🚀 🚀 News:


Normalizing flows have recently demonstrated promising results for low-level vision tasks. For image super-resolution (SR), it learns to predict diverse photo-realistic high-resolution (HR) images from the low-resolution (LR) image rather than learning a deterministic mapping. For image rescaling, it achieves high accuracy by jointly modelling the downscaling and upscaling processes. While existing approaches employ specialized techniques for these two tasks, we set out to unify them in a single formulation. In this paper, we propose the hierarchical conditional flow (HCFlow) as a unified framework for image SR and image rescaling. More specifically, HCFlow learns a bijective mapping between HR and LR image pairs by modelling the distribution of the LR image and the rest high-frequency component simultaneously. In particular, the high-frequency component is conditional on the LR image in a hierarchical manner. To further enhance the performance, other losses such as perceptual loss and GAN loss are combined with the commonly used negative log-likelihood loss in training. Extensive experiments on general image SR, face image SR and image rescaling have demonstrated that the proposed HCFlow achieves state-of-the-art performance in terms of both quantitative metrics and visual quality.

         

Requirements

  • Python 3.7, PyTorch == 1.7.1
  • Requirements: opencv-python, lpips, natsort, etc.
  • Platforms: Ubuntu 16.04, cuda-11.0
cd HCFlow-master
pip install -r requirements.txt 

Quick Run (takes 1 Minute)

To run the code with one command (without preparing data), run this command:

cd codes
# face image SR
python test_HCFLow.py --opt options/test/test_SR_CelebA_8X_HCFlow.yml

# general image SR
python test_HCFLow.py --opt options/test/test_SR_DF2K_4X_HCFlow.yml

# image rescaling
python test_HCFLow.py --opt options/test/test_Rescaling_DF2K_4X_HCFlow.yml

Data Preparation

The framework of this project is based on MMSR and SRFlow. To prepare data, put training and testing sets in ./datasets as ./datasets/DIV2K/HR/0801.png. Commonly used SR datasets can be downloaded here. There are two ways for accerleration in data loading: First, one can use ./scripts/png2npy.py to generate .npy files and use data/GTLQnpy_dataset.py. Second, one can use .pklv4 dataset (recommended) and use data/LRHR_PKL_dataset.py. Please refer to SRFlow for more details. Prepared datasets can be downloaded here.

Training

To train HCFlow for general image SR/ face image SR/ image rescaling, run this command:

cd codes

# face image SR
python train_HCFLow.py --opt options/train/train_SR_CelebA_8X_HCFlow.yml

# general image SR
python train_HCFLow.py --opt options/train/train_SR_DF2K_4X_HCFlow.yml

# image rescaling
python train_HCFLow.py --opt options/train/train_Rescaling_DF2K_4X_HCFlow.yml

All trained models can be downloaded from here.

Testing

Please follow the Quick Run section. Just modify the dataset path in test_HCFlow_*.yml.

Results

We achieved state-of-the-art performance on general image SR, face image SR and image rescaling.

For more results, please refer to the paper and supp for details.

Citation

@inproceedings{liang21hcflow,
  title={Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling},
  author={Liang, Jingyun and Lugmayr, Andreas and Zhang, Kai and Danelljan, Martin and Van Gool, Luc and Timofte, Radu},
  booktitle={IEEE Conference on International Conference on Computer Vision},
  year={2021}
}

License & Acknowledgement

This project is released under the Apache 2.0 license. The codes are based on MMSR, SRFlow, IRN and Glow-pytorch. Please also follow their licenses. Thanks for their great works.

Comments
  • Testing without GT

    Testing without GT

    Is there a way to run the test without GT? I just want to infer the model. I found a mode called LQ which -I think- should only load the images in LR directory. But this mode gives me the error: assert real_crop * self.opt['scale'] * 2 > self.opt['kernel_size'] TypeError: '>' not supported between instances of 'int' and 'NoneType'

    in LQ_dataset.py", line 88

    solved ✅ 
    opened by AhmedHashish123 4
  • Add Docker environment & web demo

    Add Docker environment & web demo

    Hey @JingyunLiang !👋

    This pull request makes it possible to run your model inside a Docker environment, which makes it easier for other people to run it. We're using an open source tool called Cog to make this process easier.

    This also means we can make a web page where other people can try out your model! View it here: https://replicate.ai/jingyunliang/hcflow-sr, which currently supports Image Super-Resolution.

    Claim your page here so you can edit it, and we'll feature it on our website and tweet about it too.

    In case you're wondering who I am, I'm from Replicate, where we're trying to make machine learning reproducible. We got frustrated that we couldn't run all the really interesting ML work being done. So, we're going round implementing models we like. 😊

    opened by chenxwh 2
  • The code implementation and the paper description seem different

    The code implementation and the paper description seem different

    Hi, your work is excellent, but there is one thing I don't understand.

    What is written in the paper is:

    "A diagonal covariance matrix with all diagonal elements close to zero"

    But the code implementation in HCFlowNet_SR_arch.py line 64 is: basic. Gaussian diag.logp (LR, - torch. Ones_ like(lr)*6, fake_ lr_ from_ hr)

    why use - torch. Ones_ like(lr)*6 as covariance matrix? This seems to be inconsistent with the description in the paper

    opened by xmyhhh 2
  • environment

    environment

    ImportError: /home/hbw/gcc-build-5.4.0/lib64/libstdc++.so.6: version `GLIBCXX_3.4.22' not found (required by /home/hbw/anaconda3/lib/python3.8/site-packages/scipy/fft/_pocketfft/pypocketfft.cpython-38-x86_64-linux-gnu.so)

    Is this error due to my GCC version being too low, and your version is? looking forward to your reply!

    opened by hbw945 2
  • Code versions of BRISQUE and NIQE used in paper

    Code versions of BRISQUE and NIQE used in paper

    Hi, I have run performance tests with the Matlab versions of the NIQE and BRISQUE codes and found deviations from the values reported in the paper. Could you please provide a link to the code you used? thanks a lot~

    solved ✅ 
    opened by xmyhhh 1
  • Update on Replicate demo

    Update on Replicate demo

    Hello again @JingyunLiang :),

    This pull request does a few little things:

    • Updated the demo link with an icon in README as you suggested
    • A bugfix for cleaning temporary directory on cog

    We have added more functionality to the Example page of your model, now you can add and delete to customise the example gallery as you like (as the owner of the page)

    Also, you could run cog push if you like to update the model of any other models on replicate in the future 😄

    opened by chenxwh 1
  • About training and inference time?

    About training and inference time?

    Thanks for your nice work!

    I want to know how much time do you need to train and inference with your models.

    Furthermore, will information about params / FLOPs be reported?

    Thanks.

    solved ✅ 
    opened by TiankaiHang 1
  • RuntimeError: The size of tensor a (20) must match the size of tensor b (40) at non-singleton dimension 3

    RuntimeError: The size of tensor a (20) must match the size of tensor b (40) at non-singleton dimension 3

    Hi, I've encountered the error when I trained the HCFlowNet. I changed my ".png" dataset to ".pklv4" dataset. I was trained on the platform of windows 10 with 1 single GPU. Could you please help me find the error? Thanks a lot.

    opened by William9Baker 0
  • How to build an invertible mapping between two variables whose dimensions are different ?

    How to build an invertible mapping between two variables whose dimensions are different ?

    Maybe this is a stupid question, but I have been puzzled for quite a long time. In the image super-resolution task, the input and output have different dimensions. How to build an invertible mapping between them? I notice that you calculate the determinant of the Jacobian, so I thought the mapping here is strictly invertible?

    opened by Wangbk-dl 0
  • How to make an invertible mapping between two variables whose dimensions are different ?

    How to make an invertible mapping between two variables whose dimensions are different ?

    Maybe this is a stupid question, but I have been puzzled for quite a long time. In the image super-resolution task, the input and output have different dimensions. How to build such an invertible mapping between them ? Take an example: If I have a low-resolution(LR) image x, and I have had an invertible function G. I can feed LR image x into G, and generate an HR image y. But can you ensure that we could obtain an output the same as x when we feed y into G_inverse?

    y = G(x) x' = G_inverse(y) =? x

    I would appreciate it if you could offer some help.

    opened by Wangbk-dl 0
  • New Super-Resolution Benchmarks

    New Super-Resolution Benchmarks

    Hello,

    MSU Graphics & Media Lab Video Group has recently launched two new Super-Resolution Benchmarks.

    If you are interested in participating, you can add your algorithm following the submission steps:

    We would be grateful for your feedback on our work!

    opened by EvgeneyBogatyrev 0
  • Why NLL is negative during the training?

    Why NLL is negative during the training?

    Great work! During the training process, we found that the output NLL is negative. But theoretically, NLL should be positive. Is there any explanation for this?

    opened by IMSEMZPZ 0
Owner
Jingyun Liang
PhD Student at Computer Vision Lab, ETH Zurich
Jingyun Liang
Symmetry and Uncertainty-Aware Object SLAM for 6DoF Object Pose Estimation

SUO-SLAM This repository hosts the code for our CVPR 2022 paper "Symmetry and Uncertainty-Aware Object SLAM for 6DoF Object Pose Estimation". ArXiv li

Robot Perception & Navigation Group (RPNG) 97 Jan 03, 2023
YOLOv2 in PyTorch

YOLOv2 in PyTorch NOTE: This project is no longer maintained and may not compatible with the newest pytorch (after 0.4.0). This is a PyTorch implement

Long Chen 1.5k Jan 02, 2023
Shuffle Attention for MobileNetV3

SA-MobileNetV3 Shuffle Attention for MobileNetV3 Train Run the following command for train model on your own dataset: python train.py --dataset mnist

Sajjad Aemmi 36 Dec 28, 2022
The aim of the game, as in the original one, is to find a specific image from a group of different images of a person's face

GUESS WHO Main Links: [Github] [App] Related Links: [CLIP] [Celeba] The aim of the game, as in the original one, is to find a specific image from a gr

Arnau - DIMAI 3 Jan 04, 2022
An end-to-end implementation of intent prediction with Metaflow and other cool tools

You Don't Need a Bigger Boat An end-to-end (Metaflow-based) implementation of an intent prediction flow for kids who can't MLOps good and wanna learn

Jacopo Tagliabue 614 Dec 31, 2022
ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators

ELECTRA Introduction ELECTRA is a method for self-supervised language representation learning. It can be used to pre-train transformer networks using

Google Research 2.1k Dec 28, 2022
This repository provides data for the VAW dataset as described in the CVPR 2021 paper titled "Learning to Predict Visual Attributes in the Wild"

Visual Attributes in the Wild (VAW) This repository provides data for the VAW dataset as described in the CVPR 2021 Paper: Learning to Predict Visual

Adobe Research 36 Dec 30, 2022
OpenMMLab Semantic Segmentation Toolbox and Benchmark.

Documentation: https://mmsegmentation.readthedocs.io/ English | 简体中文 Introduction MMSegmentation is an open source semantic segmentation toolbox based

OpenMMLab 5k Dec 31, 2022
CTF Challenge for CSAW Finals 2021

Terminal Velocity Misc CTF Challenge for CSAW Finals 2021 This is a challenge I've had in mind for almost 15 years and never got around to building un

Jordan 6 Jul 30, 2022
Dense Prediction Transformers

Vision Transformers for Dense Prediction This repository contains code and models for our paper: Vision Transformers for Dense Prediction René Ranftl,

Intelligent Systems Lab Org 1.3k Jan 02, 2023
A data-driven maritime port simulator

PySeidon - A Data-Driven Maritime Port Simulator 🌊 Extendable and modular software for maritime port simulation. This software uses entity-component

6 Apr 10, 2022
Code for our ACL 2021 paper - ConSERT: A Contrastive Framework for Self-Supervised Sentence Representation Transfer

ConSERT Code for our ACL 2021 paper - ConSERT: A Contrastive Framework for Self-Supervised Sentence Representation Transfer Requirements torch==1.6.0

Yan Yuanmeng 478 Dec 25, 2022
Large dataset storage format for Pytorch

H5Record Large dataset ( 100G, = 1T) storage format for Pytorch (wip) Support python 3 pip install h5record Why? Writing large dataset is still a

theblackcat102 43 Oct 22, 2022
RefineNet: Multi-Path Refinement Networks for High-Resolution Semantic Segmentation

Multipath RefineNet A MATLAB based framework for semantic image segmentation and general dense prediction tasks on images. This is the source code for

Guosheng Lin 575 Dec 06, 2022
MLOps will help you to understand how to build a Continuous Integration and Continuous Delivery pipeline for an ML/AI project.

page_type languages products description sample python azure azure-machine-learning-service azure-devops Code which demonstrates how to set up and ope

1 Nov 01, 2021
vit for few-shot classification

Few-Shot ViT Requirements PyTorch (= 1.9) TorchVision timm (latest) einops tqdm numpy scikit-learn scipy argparse tensorboardx Pretrained Checkpoints

Martin Dong 26 Nov 30, 2022
Towards Understanding Quality Challenges of the Federated Learning: A First Look from the Lens of Robustness

FL Analysis This repository contains the code and results for the paper "Towards Understanding Quality Challenges of the Federated Learning: A First L

3 Oct 17, 2022
Python Implementation of the CoronaWarnApp (CWA) Event Registration

Python implementation of the Corona-Warn-App (CWA) Event Registration This is an implementation of the Protocol used to generate event and location QR

MaZderMind 17 Oct 05, 2022
Hardware accelerated, batchable and differentiable optimizers in JAX.

JAXopt Installation | Examples | References Hardware accelerated (GPU/TPU), batchable and differentiable optimizers in JAX. Installation JAXopt can be

Google 621 Jan 08, 2023
[EMNLP 2020] Keep CALM and Explore: Language Models for Action Generation in Text-based Games

Contextual Action Language Model (CALM) and the ClubFloyd Dataset Code and data for paper Keep CALM and Explore: Language Models for Action Generation

Princeton Natural Language Processing 43 Dec 16, 2022