This is a GUI for scrapping PDFs with the help of optical character recognition making easier than ever to scrape PDFs.

Overview

pdf-scraper-with-ocr

With this tool I am aiming to facilitate the work of those who need to scrape PDFs either by hand or using tools that doesn't implement any kind of character recognition.

How it works

When you run the program a GUI will open with four buttons. Only two of them are available for use at the begining: "Choose a PDF" and "Extract Information". We will start choosing our PDF. When the button is clicked a new window will open where we can navigate through our folders and select the PDF we want.

Once we have selected the PDF the button "Delete Pages" will activate. Here we will be able to select which pages we want to delete from our PDF because they do not contain information we want to scrape. Do not worry, the program will create a copy of your PDF and modify the copy, it will not touch the original except to create the copy. In case you do not want to delete any pages just leave the field in blank, however, if our PDF contains a cover, index or other kind of one time only pages you can delete them by indicating each page separated by a semicolon, see: 1;2;10; this will delete pages 1, 2 and 10. If you want to delete a range of pages you can indicate the first and last page separated by a hyphen: 5-10 will delete pages 5, 6, 7, 8, 9 and 10. See below for other commands.

Now that we have deleted the pages we did not need the button "PDF to images" will activate, pressing it will open a window where we will be asked to select the folder where the pages of the PDF will be saved as images. If the PDF has over 100 pages this might take a while (around 25 minutes for 456 pages in my case). It might look like the window freezes but do not worry, the program is still running.

Finally, once all the pages have been converted to images we can start scraping the PDF. By clicking on "Extract Information" the window will change and present four new buttons: "Load images", "Undo", "Show image" and "Extract text". Clicking on "Load images" will open a window where we can select the folder where our images where saved. Once we have selected the folder we will be asked if our PDF follows any pattern. A pattern is used whenever the information we want to obtain is divided in different pages. Maybe the phone number of a client is in one page and the email in the next one, however we must be sure that every client will follow this pattern and have the phone number and email in the same place. In case our information is not split across diferent pages we can write 1, as the pattern will repeat every page. We will also need to choose if we want to see random images or not. We will select not randomized by now, see below for information.

Whenever we click on "ok" the program will load a series of preview images where we can select by clicking and draggin the information we want to keep. Every time we start clicking a red rectangle will follow the mouse until the click is released. After releasing the mouse we will be asked what is the name of the field we just selected. This name will be the name of the column where this is information is stored. After creating as many selections as we want we can click on "Extract text". Go grab a coffe, this might take a long time but after finishing a new file will appear in the folder where you are running this script. An Excel file with all the information you wanted.

Here you have a demo of the process of selecting the area with a project that has a pattern of 2: https://i.imgur.com/Pt9unky.mp4

Deleting pages

Every PDF is different from others. They can be organized in a lot of different ways, making the automation of the pages to delete kind of a pain. Currently this are the commands supported for deleting pages:

Single page deletion

This will delete the pages that to correspond to the written indexes: 1;2;10; will delete pages 1, 2 and 10.

Delete page in range

This will delete the pages between the first and last index seperated by a hyphen: 5-10 will delete pages 5, 6, 7, 8, 9 and 10.

Delete every Nx pages:

If every three files in our PDF we have a file that does not have any interesting information by using. Nx we will delete every index multiple of N. 3x will delete pages 3, 6, 9, 12, 15...

Delete every Nx + C pages:

Maybe the pattern our PDF follows goes like this: page 1 (useful), page 2 (useless), page 3 (useful),(the pattern begins again here) page 4 (useful)... We will need to delete pages 2, 5, 8, 11... Then using 3x+1 will delete every three pages the next page.

Delete everything after or before N:

In case we want to delete all pages after page N using: N- will delete every page after page N. In the same way, using: -N will delete all pages before N.

Combinations

You can combine different methods to delete pages separating them by a semicolon: 4x; 100-; 45; this will delete every fourth page, all pages after index 100 and the page 45.

The Show image button

It is important that you make sure all your selections grab all the information in all pages. To help you create better selections you can click on the "Show image" button to navigate across different pages. If you have a pattern of 1 you will see that every time you click on the button your image change but the rectangles stay in place. In case you want to delete any of them you can use the "Undo" button (explanation below). If you have a pattern greater than 1 when clicking on "Show image" you will see how your selections disappear. This is because the program keeps track of what selections you have made in which page of the pattern. You can also create selections here that will be analyzed next to the ones in the previous page.

Randomized preview

Selecting to randomize the preview images can be quite helpful. Many times every section in a PDF seems to follow the same pattern and fill the same space but every now and them some fields might not be were they should or some piece of text might be bigger than rectangle you created before. This is were the randomized preview can save your output file. Keep in mind that the random preview will keep showing images in order according to the pattern you selected, you will just see different patterns instead of the three first ones that the not randomized option offers.

The Undo button

In case you clicked something by mistake, did not write correctly the name you wanted for a field or created a rectangle that later you discovered will not capture all the info you wanted there is an undo button. The Undo button will eliminate the last rectangle created. In case your PDF follows a pattern greater than 1 the undo button will delete the last rectangle created in the page you are. For example, if your PDF has a pattern of 3 and you have created two rectangles on page 1, then click on "Show image" to see the next image in your pattern (page 2) and create a rectangle there and go back to page 1 (by clicking twice on "Show image"), clicking the undo button will not delete the selection from page 2, it will delete the last created selection in the page you are at the moment of clicking.

Owner
Jacobo José Guijarro Villalba
Jacobo José Guijarro Villalba
A Tensorflow model for text recognition (CNN + seq2seq with visual attention) available as a Python package and compatible with Google Cloud ML Engine.

Attention-based OCR Visual attention-based OCR model for image recognition with additional tools for creating TFRecords datasets and exporting the tra

Ed Medvedev 933 Dec 29, 2022
Motion Detection Squid Game with OpenCV Python

*Motion Detection Squid Game with OpenCV Python i am newbie in python. In this project I made a simple game to follow the trend about the red light gr

Nayan 17 Nov 22, 2022
Use Youdao OCR API to covert your clipboard image to text.

Alfred Clipboard OCR 注:本仓库基于 oott123/alfred-clipboard-ocr 的逻辑用 Python 重写,换用了有道 AI 的 API,准确率更高,有效防止百度导致隐私泄露等问题,并且有道 AI 初始提供的 50 元体验金对于其资费而言个人用户基本可以永久使用

Junlin Liu 6 Sep 19, 2022
【Auto】原神⭐钓鱼辅助工具 | 自动收竿、校准游标 | ✨您只需要抛出鱼竿,我们会帮你完成一切✨

原神钓鱼辅助工具 ✨ 作者正在努力重构代码中……会尽快带给大家一个更完美的脚本 ✨ 「您只需抛出鱼竿,然后我们会帮您搞定一切」 如果你觉得这个脚本好用,请点一个 Star ⭐ ,你的 Star 就是作者更新最大的动力 点击这里 查看演示视频 ✨ 欢迎大家在 Issues 中分享自己的配置文件 ✨ ✨

261 Jan 02, 2023
This project proposes a camera vision based cursor control system, using hand moment captured from a webcam through a landmarks of hand by using Mideapipe module

This project proposes a camera vision based cursor control system, using hand moment captured from a webcam through a landmarks of hand by using Mideapipe module

Chandru 2 Feb 20, 2022
利用Paddle框架复现CRAFT

CRAFT-Paddle 利用Paddle框架复现CRAFT CRAFT 本项目基于paddlepaddle框架复现CRAFT,并参加百度第三届论文复现赛,将在2021年5月15日比赛完后提供AIStudio链接~敬请期待 参考项目: CRAFT: Character-Region Awarenes

QuanHao Guo 2 Mar 07, 2022
Generating .npy dataset and labels out of given image, containing numbers from 0 to 9, using opencv

basic-dataset-generator-from-image-of-numbers generating .npy dataset and labels out of given image, containing numbers from 0 to 9, using opencv inpu

1 Jan 01, 2022
A webcam-based 3x3x3 rubik's cube solver written in Python 3 and OpenCV.

Qbr Qbr, pronounced as Cuber, is a webcam-based 3x3x3 rubik's cube solver written in Python 3 and OpenCV. 🌈 Accurate color detection 🔍 Accurate 3x3x

Kim 金可明 502 Dec 29, 2022
Augmenting Anchors by the Detector Itself

Augmenting Anchors by the Detector Itself Introduction It is difficult to determine the scale and aspect ratio of anchors for anchor-based object dete

4 Nov 06, 2022
Implementation of our paper 'PixelLink: Detecting Scene Text via Instance Segmentation' in AAAI2018

Code for the AAAI18 paper PixelLink: Detecting Scene Text via Instance Segmentation, by Dan Deng, Haifeng Liu, Xuelong Li, and Deng Cai. Contributions

758 Dec 22, 2022
🖺 OCR using tensorflow with attention

tensorflow-ocr 🖺 OCR using tensorflow with attention, batteries included Installation git clone --recursive http://github.com/pannous/tensorflow-ocr

646 Nov 11, 2022
An unofficial implementation of the paper "AutoVC: Zero-Shot Voice Style Transfer with Only Autoencoder Loss".

AutoVC: Zero-Shot Voice Style Transfer with Only Autoencoder Loss This is an unofficial implementation of AutoVC based on the official one. The reposi

Chien-yu Huang 27 Jun 16, 2022
This is a Computer vision package that makes its easy to run Image processing and AI functions. At the core it uses OpenCV and Mediapipe libraries.

CVZone This is a Computer vision package that makes its easy to run Image processing and AI functions. At the core it uses OpenCV and Mediapipe librar

CVZone 648 Dec 30, 2022
Fusion 360 Add-in that creates a pair of toothed curves that can be used to split a body and create two pieces that slide and lock together.

Fusion-360-Add-In-PuzzleSpline Fusion 360 Add-in that creates a pair of toothed curves that can be used to split a body and create two pieces that sli

Michiel van Wessem 1 Nov 15, 2021
Official implementation of "An Image is Worth 16x16 Words, What is a Video Worth?" (2021 paper)

An Image is Worth 16x16 Words, What is a Video Worth? paper Official PyTorch Implementation Gilad Sharir, Asaf Noy, Lihi Zelnik-Manor DAMO Academy, Al

213 Nov 12, 2022
Table Extraction Tool

Tree Structure - Table Extraction Fonduer has been successfully extended to perform information extraction from richly formatted data such as tables.

HazyResearch 88 Jun 02, 2022
([email protected]) Boosting Co-teaching with Compression Regularization for Label Noise

Nested-Co-teaching ([email protected]) Pytorch implementation of paper "Boosting Co-tea

YINGYI CHEN 41 Jan 03, 2023
A tensorflow implementation of EAST text detector

EAST: An Efficient and Accurate Scene Text Detector Introduction This is a tensorflow re-implementation of EAST: An Efficient and Accurate Scene Text

2.9k Jan 02, 2023
A curated list of resources for text detection/recognition (optical character recognition ) with deep learning methods.

awesome-deep-text-detection-recognition A curated list of awesome deep learning based papers on text detection and recognition. Text Detection Papers

2.4k Jan 08, 2023
computer vision, image processing and machine learning on the web browser or node.

Image processing and Machine learning labs   computer vision, image processing and machine learning on the web browser or node note Fast Fourier Trans

ryohei tanaka 487 Nov 11, 2022