Provided is code that demonstrates the training and evaluation of the work presented in the paper: "On the Detection of Digital Face Manipulation" published in CVPR 2020.

Overview

FFD Source Code

Provided is code that demonstrates the training and evaluation of the work presented in the paper: "On the Detection of Digital Face Manipulation" published in CVPR 2020.

The proposed network framework with attention mechanism

Project Webpage

See the MSU CVLab website for project details and access to the DFFD dataset.

http://cvlab.cse.msu.edu/project-ffd.html

Notes

This code is provided as example code, and may not reflect a specific combination of hyper-parameters presented in the paper.

Description of contents

  • xception.py: Defines the Xception network with the attention mechanism
  • train*.py: Train the model on the train data
  • test*.py: Evaluate the model on the test data

Acknowledgements

If you use or refer to this source code, please cite the following paper:

@inproceedings{cvpr2020-dang,
  title={On the Detection of Digital Face Manipulation},
  author={Hao Dang, Feng Liu, Joel Stehouwer, Xiaoming Liu, Anil Jain},
  booktitle={In Proceeding of IEEE Computer Vision and Pattern Recognition (CVPR 2020)},
  address={Seattle, WA},
  year={2020}
}
Comments
  • Is it possible to release the script for generating edited images by FaceApp?

    Is it possible to release the script for generating edited images by FaceApp?

    Hi, Thanks for releasing the code and dataset! Part of your dataset is generated by FaceApp (using automated scripts running on android devices). I am wondering if you could also release this android script? I also plan to generate some edited images using FaceApp, and an automated script will be quite helpful!! Thanks!

    opened by zjxgithub 2
  • Question about mask images in dataset

    Question about mask images in dataset

    Thank you for releasing the code and the DFFD dataset!

    I noticed that in the "faceapp" part of the dataset, there is a ground-truth manipulation masks image for each fake image. How are these mask images generated?

    The paper mentioned that the ground-truth manipulation mask were calculated by source images and fake images, but I still did not understand how.

    Thank you for answering my question. :)

    opened by piddnad 2
  • Serveral question about dataset

    Serveral question about dataset

    Thanks for releasing the code and the dataset. I have some questions for the dataset,

    • In align_faces/align_faces.m inside scripts.zip, there is a file called box.txt. But I can't find it anywhere. It seems crucial to align and crop the images.

    image

    • All of the images in dataset are in the resolution of 299x299. I wonder how did you process the images in CelebA. I remember the aligned and cropped image in CelebA are in the resolution of 128x128.
    opened by wheatdog 2
  • attention map and gt mask matching

    attention map and gt mask matching

    Hi, thanks for your work. I have a small question. The attention map size is 19x19, but the gt mask (diff image) is 299x299. Are they matched by downsampling gt mask?

    opened by neverUseThisName 1
  • Are label information leaked in testing process?

    Are label information leaked in testing process?

    Thanks for uploading your code and dataset. After a short view I'm considering your predicting process is like: generating masks with scripts on test data, using test data and their masks to feed into trained model to predict. But I was confused that in your test.py file, you get dataset like this:

    def get_dataset():
      return Dataset('test', BATCH_SIZE, CONFIG['img_size'], CONFIG['map_size'], CONFIG['norms'], SEED)
    

    then you differ masks of real and fake photos by using their labels in dataset.py:

      def __getitem__(self, index):
        im_name = self.images[index]
        img = self.load_image(im_name)
        if self.label_name == 'Real':
          msk = torch.zeros(1,19,19)
        else:
          msk = self.load_mask(im_name.replace('Fake/', 'Mask/'))
        return {'img': img, 'msk': msk, 'lab': self.label, 'im_name': im_name}
    

    Is it fair to distinguish masks by label_name in the testing process? I also wonder how to create Mask/ folder when you predict fake images that donot have corresponding real images?

    If i misunderstand anything please correct me, thanks a lot!

    opened by insomnia1996 0
  • May I know where I can find the imagenet pretrained model?

    May I know where I can find the imagenet pretrained model?

    Hi,

    For using pretrained model: xception-b5690688.pth, may I know where I can find the model specified here: https://github.com/JStehouwer/FFD_CVPR2020/blob/master/xception.py#L243

    Thanks.

    opened by ilovecv 2
  • Error in get_batch in train.py

    Error in get_batch in train.py

    Greetings,

    Many thanks to your wok. I am very interested in your work and I want to try out your model. When I ran the train*.py, I encounter the following issue , here are part of the error messages.

    batch = [next(_.generator, None) for _ in self.datasets]
    

    File "D:\Fake Detector\attention_map_to_detect_manipulation\FFD_CVPR2020\dataset.py", line 91, in self = reduction.pickle.load(from_parent)batch = [next(_.generator, None) for _ in self.datasets]

    File "D:\Fake Detector\attention_map_to_detect_manipulation\FFD_CVPR2020\dataset.py", line 73, in get_batch EOFError: Ran out of input

    and reduction.dump(process_obj, to_child) File "C:\Users\xxx\anaconda3\envs\d2l\lib\multiprocessing\reduction.py", line 60, in dump ForkingPickler(file, protocol).dump(obj) TypeError: cannot pickle 'generator' object

    What I did is just make directory data/train/Real(Fake) and place my images dataset into the corresponding folder and then ran the train.py. However, it seems it can't work. May I ask whether I missed anything. I am running the program in windows system and I don't know that will affect as well.

    opened by bitrookie 1
  • Use pretrained model to classify own data?

    Use pretrained model to classify own data?

    Hi @JStehouwer - thank you so much for the awesome code (v2.1)!

    I am trying to use your pretrained model on my own images in order to try out the classifier.

    Are you able to confirm:

    • Filename and format of pretrained model
    • Whether anything else is needed to perform the above classification

    Thanks again

    opened by jtlz2 4
  • dataset questions

    dataset questions

    1、 Whether the published dataset ( FFHQ、FaceAPP、StarGAN、PGGAN、StyleGAN ) has been randomly selected ? And How to generate starGAN mask, how to determine the specific CelebA picture used ? 2、 I have downloaded the FF++、CelebA and DeepFaceLab dataset, how to randomly select the training set, test set and verification set ? And how to set the random seed ? 3、 Which data sets need align processing, and how, please specify ?

    Thank you for your work, it is very good, I will follow your work, but now the problem of dataset makes my work difficult, I hope to get your help.

    opened by miaoct 2
Releases(v2.1)
Discord-Protect is a simple discord bot allowing you to have some security on your discord server by ordering a captcha to the user who joins your server.

Discord-Protect Discord-Protect is a simple discord bot allowing you to have some security on your discord server by ordering a captcha to the user wh

Tir Omar 2 Oct 28, 2021
SEC'21: Sparse Bitmap Compression for Memory-Efficient Training onthe Edge

Training Deep Learning Models on The Edge Training on the Edge enables continuous learning from new data for deployed neural networks on memory-constr

Brown University Scale Lab 4 Nov 18, 2022
Mercer Gaussian Process (MGP) and Fourier Gaussian Process (FGP) Regression

Mercer Gaussian Process (MGP) and Fourier Gaussian Process (FGP) Regression We provide the code used in our paper "How Good are Low-Rank Approximation

Aristeidis (Ares) Panos 0 Dec 13, 2021
darija <-> english dictionary

darija-dictionary Having advanced IT solutions that are well adapted to the Moroccan context passes inevitably through understanding Moroccan dialect.

DODa 102 Jan 01, 2023
Train Scene Graph Generation for Visual Genome and GQA in PyTorch >= 1.2 with improved zero and few-shot generalization.

Scene Graph Generation Object Detections Ground truth Scene Graph Generated Scene Graph In this visualization, woman sitting on rock is a zero-shot tr

Boris Knyazev 93 Dec 28, 2022
git《Beta R-CNN: Looking into Pedestrian Detection from Another Perspective》(NeurIPS 2020) GitHub:[fig3]

Beta R-CNN: Looking into Pedestrian Detection from Another Perspective This is the pytorch implementation of our paper "[Beta R-CNN: Looking into Pede

35 Sep 08, 2021
The fastai deep learning library

Welcome to fastai fastai simplifies training fast and accurate neural nets using modern best practices Important: This documentation covers fastai v2,

fast.ai 23.2k Jan 07, 2023
Semantic segmentation models, datasets and losses implemented in PyTorch.

Semantic Segmentation in PyTorch Semantic Segmentation in PyTorch Requirements Main Features Models Datasets Losses Learning rate schedulers Data augm

Yassine 1.3k Jan 07, 2023
A Python parser that takes the content of a text file and then reads it into variables.

Text-File-Parser A Python parser that takes the content of a text file and then reads into variables. Input.text File 1. What is your ***? 1. 18 -

Kelvin 0 Jul 26, 2021
Code for the paper "There is no Double-Descent in Random Forests"

Code for the paper "There is no Double-Descent in Random Forests" This repository contains the code to run the experiments for our paper called "There

2 Jan 14, 2022
PyTorch implementation of our Adam-NSCL algorithm from our CVPR2021 (oral) paper "Training Networks in Null Space for Continual Learning"

Adam-NSCL This is a PyTorch implementation of Adam-NSCL algorithm for continual learning from our CVPR2021 (oral) paper: Title: Training Networks in N

Shipeng Wang 34 Dec 21, 2022
Source code for Fathony, Sahu, Willmott, & Kolter, "Multiplicative Filter Networks", ICLR 2021.

Multiplicative Filter Networks This repository contains a PyTorch MFN implementation and code to perform & reproduce experiments from the ICLR 2021 pa

Bosch Research 66 Jan 04, 2023
Code for "Learning Graph Cellular Automata"

Learning Graph Cellular Automata This code implements the experiments from the NeurIPS 2021 paper: "Learning Graph Cellular Automata" Daniele Grattaro

Daniele Grattarola 37 Oct 26, 2022
Attention for PyTorch with Linear Memory Footprint

Attention for PyTorch with Linear Memory Footprint Unofficially implements https://arxiv.org/abs/2112.05682 to get Linear Memory Cost on Attention (+

11 Jan 09, 2022
DVG-Face: Dual Variational Generation for Heterogeneous Face Recognition, TPAMI 2021

DVG-Face: Dual Variational Generation for HFR This repo is a PyTorch implementation of DVG-Face: Dual Variational Generation for Heterogeneous Face Re

52 Dec 30, 2022
PyToch implementation of A Novel Self-supervised Learning Task Designed for Anomaly Segmentation

Self-Supervised Anomaly Segmentation Intorduction This is a PyToch implementation of A Novel Self-supervised Learning Task Designed for Anomaly Segmen

WuFan 2 Jan 27, 2022
🏃‍♀️ A curated list about human motion capture, analysis and synthesis.

Awesome Human Motion 🏃‍♀️ A curated list about human motion capture, analysis and synthesis. Contents Introduction Human Models Datasets Data Process

Dennis Wittchen 274 Dec 14, 2022
Spontaneous Facial Micro Expression Recognition using 3D Spatio-Temporal Convolutional Neural Networks

Spontaneous Facial Micro Expression Recognition using 3D Spatio-Temporal Convolutional Neural Networks Abstract Facial expression recognition in video

Bogireddy Sai Prasanna Teja Reddy 103 Dec 29, 2022
PyTorch implementation for Convolutional Networks with Adaptive Inference Graphs

Convolutional Networks with Adaptive Inference Graphs (ConvNet-AIG) This repository contains a PyTorch implementation of the paper Convolutional Netwo

Andreas Veit 176 Dec 07, 2022
Repository for RNNs using TensorFlow and Keras - LSTM and GRU Implementation from Scratch - Simple Classification and Regression Problem using RNNs

RNN 01- RNN_Classification Simple RNN training for classification task of 3 signal: Sine, Square, Triangle. 02- RNN_Regression Simple RNN training for

Nahid Ebrahimian 13 Dec 13, 2022