NLP project that works with news (NER, context generation, news trend analytics)

Overview

СоАвтор

СоАвтор – платформа и открытый набор инструментов для редакций и журналистов-фрилансеров, который призван сделать процесс создания контента максимально комфортным и быстрым.

Инструменты для СоАвтора разрабатываются на основе открытой аналитической платформы OT. В ближайших планах полная интеграция приложения с платформой: сбор и обработка данных, запуск аналитических алгоритмов, а также сборка и запуск приложения будет осуществляться на платформе. Публичный репозиторий с инструментами платформы OT coming soon.

Сейчас мы разрабатываем следующие инструменты:

  • Отслеживание событий и трендов в режиме реального времени (работа со структурированными новостными форматами и парсинг новостных источников). Для этого мы пишем модуль для непрерывного парсинга новостных изданий и придумываем, как отслеживать информативные изменения в статьях.
  • Подбор релевантных статей к готовому материалу для автоматического формирования модуля бэкграунда (справочной информации или предыстории события). Для этого мы используем инструменты для поиска семантически похожих текстов в архиве и инструменты для генерации саммари из нескольких документов.

Разработка ведется вместе с профессиональным сообществом, чтобы сделать рабочий процесс для редакций и фрилансеров максимально удобным. Платформа "СоАвтор" имеет модульную структуру. Вы можете придумать новый инструмент, который упрощает работу с текстом, или принять участие в работе над теми, что уже в разработке. Вступайте в наше сообщество на Discord и присылайте свои #идеи того, как можно использовать “СоАвтор” при работе с контентом.

СоАвтор интерфейс


English below


Запустить приложение у себя

Установка

  1. Скачайте файлы проекта или сделайте форк и воспользуйтесь командой git clone
  2. Скачайте файлы с данными: ru_stopwords.txt и news_df.parquet
  3. Скачайте файлы моделей: rubert_tiny и rut5_base_sum
  4. Откройте терминал и перейдите в директорию проекта
  5. Используйте pip install requirements.txt, чтобы установить все нужные библиотеки

Запуск

  1. Поменяйте в файле config.yaml пути к файлам данных и моделям
  2. Откройте терминал и перейдите в директорию проекта
  3. Наберите в терминале команду streamlit run menu.py
  4. Приложение по умолчанию будет доступно по адресу http://localhost:8501 P.S.: приложение можно запустить на своём датасете, если будет соблюдён формат. Пример датасета и описание формата в директории data.

Как участвовать в разработке проекта

Текущие задачи

  1. Обновляемая лента новостей
  2. Модуль для подключения к соцсетям
  3. Анализ трендов по постам из социальных сетей
  4. Классификация evergreen новостей

Помочь решить одну из текущих проблем

  1. Проверьте есть ли открытые проблемы в Issues и выберите одну из них
  2. Если у вас есть своя идея, как законтрибьютить в этот проект, откройте в Issues новый тикет (как это сделать, описано ниже).
  3. Сделайте форк проекта, начните работать над тикетом и внесите свои изменения через pull request.

Добавить проблему (issue)

  1. Если вы нашли баг или недоработку, мы будем признательны, если вы оставите её описание в разделе Issues с тегом bug.
  2. Если у вас есть вопросы по функционалу или вы не понимаете баг это или фича, оставьте нам вопрос в разделе Issues с тегом question.
  3. Если у вас есть идея, какие возможности вы хотели бы ещё видеть в приложении, но не уверены, что можете их самостоятельно реализовать, добавьте описание идеи в раздел Issues с тегом enhancement.

Что ещё я могу делать

  1. Принять участие в обсуждении этого проекта или ваших собственных идей в дискорде нашего сообщества WellnessDataClub.
  2. Взять СоАвтор за основу для разработки собственного open source продукта. СоАвтор сейчас работает с новостями и соцсетями, вы можете начать работать с другим типом данных :)
  3. Примите участие в другом нашем open source проекте OpenMask

Launch this project locally

Installation

  1. Download project files or make fork and use git clone
  2. Download data files: ru_stopwords.txt и news_df.parquet
  3. Download models: rubert_tiny и rut5_base_sum
  4. Using the terminal, change directory to the project's directory
  5. Use pip install requirements.txt

Launch

  1. Change paths to the data and models inside config.yaml
  2. Using the terminal, change directory to the project's directory
  3. Run streamlit run menu.py
  4. The app is available with http://localhost:8501 by default P.S.: this app can be launched with your own data in the right format Dataset example, format description are in the data directory.

How to participate in this project

Current tasks

  1. Updating news feed
  2. One module to collect social network data
  3. Trend analysis based on social network posts
  4. Evergreen news classification

Help to resolve one of current issues

  1. Check if there is an open issue that you'd like to solve
  2. If you have your own idea or see a bug, add a new issue (instructions below)
  3. Make fork from this project, make changes and add them with new pull request.

Add an issue

  1. Add bugs or smth that has to be finished to Issues with bug tag.
  2. If you have questions about functionality or code ask in Issues withquestion tag.
  3. If you have some ideas about new functions, suggest it in Issues with enhancement tag.

What else can I do

  1. Take part in the discussion of this project or your own ideas with our Discord community WellnessDataClub.
  2. Use this project as a base for your own open source product. We now work with news, you csn choose another data type :)
  3. Become a part of our another project OpenMask
:hot_pepper: R²SQL: "Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent Semantic Parsing." (AAAI 2021)

R²SQL The PyTorch implementation of paper Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent Semantic Parsing. (AAAI 2021) Requirement

huybery 60 Dec 31, 2022
Repository for Graph2Pix: A Graph-Based Image to Image Translation Framework

Graph2Pix: A Graph-Based Image to Image Translation Framework Installation Install the dependencies in env.yml $ conda env create -f env.yml $ conda a

18 Nov 17, 2022
Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS)

TOPSIS implementation in Python Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) CHING-LAI Hwang and Yoon introduced TOPSIS

Hamed Baziyad 8 Dec 10, 2022
REST API for sentence tokenization and embedding using Multilingual Universal Sentence Encoder.

What is MUSE? MUSE stands for Multilingual Universal Sentence Encoder - multilingual extension (16 languages) of Universal Sentence Encoder (USE). MUS

Dani El-Ayyass 47 Sep 05, 2022
Facebook AI Research Sequence-to-Sequence Toolkit written in Python.

Fairseq(-py) is a sequence modeling toolkit that allows researchers and developers to train custom models for translation, summarization, language mod

13.2k Jul 07, 2021
A natural language processing model for sequential sentence classification in medical abstracts.

NLP PubMed Medical Research Paper Abstract (Randomized Controlled Trial) A natural language processing model for sequential sentence classification in

Hemanth Chandran 1 Jan 17, 2022
Задания КЕГЭ по информатике 2021 на Python

КЕГЭ 2021 на Python В этом репозитории мои решения типовых заданий КЕГЭ по информатике в 2021 году, БЕСПЛАТНО! Задания Взяты с https://inf-ege.sdamgia

8 Oct 13, 2022
A framework for training and evaluating AI models on a variety of openly available dialogue datasets.

ParlAI (pronounced “par-lay”) is a python framework for sharing, training and testing dialogue models, from open-domain chitchat, to task-oriented dia

Facebook Research 9.7k Jan 09, 2023
This code extends the neural style transfer image processing technique to video by generating smooth transitions between several reference style images

Neural Style Transfer Transition Video Processing By Brycen Westgarth and Tristan Jogminas Description This code extends the neural style transfer ima

Brycen Westgarth 110 Jan 07, 2023
Official code of our work, Unified Pre-training for Program Understanding and Generation [NAACL 2021].

PLBART Code pre-release of our work, Unified Pre-training for Program Understanding and Generation accepted at NAACL 2021. Note. A detailed documentat

Wasi Ahmad 138 Dec 30, 2022
A collection of Classical Chinese natural language processing models, including Classical Chinese related models and resources on the Internet.

GuwenModels: 古文自然语言处理模型合集, 收录互联网上的古文相关模型及资源. A collection of Classical Chinese natural language processing models, including Classical Chinese related models and resources on the Internet.

Ethan 66 Dec 26, 2022
Search with BERT vectors in Solr and Elasticsearch

Search with BERT vectors in Solr and Elasticsearch

Dmitry Kan 123 Dec 29, 2022
A minimal Conformer ASR implementation adapted from ESPnet.

Conformer ASR A minimal Conformer ASR implementation adapted from ESPnet. Introduction I want to use the pre-trained English ASR model provided by ESP

Niu Zhe 3 Jan 24, 2022
jiant is an NLP toolkit

jiant is an NLP toolkit The multitask and transfer learning toolkit for natural language processing research Why should I use jiant? jiant supports mu

ML² AT CILVR 1.5k Jan 04, 2023
Dual languaged (rus+eng) tool for packing and unpacking archives of Silky Engine.

SilkyArcTool English Dual languaged (rus+eng) GUI tool for packing and unpacking archives of Silky Engine. It is not the same arc as used in Ai6WIN. I

Tester 5 Sep 15, 2022
Facilitating the design, comparison and sharing of deep text matching models.

MatchZoo Facilitating the design, comparison and sharing of deep text matching models. MatchZoo 是一个通用的文本匹配工具包,它旨在方便大家快速的实现、比较、以及分享最新的深度文本匹配模型。 🔥 News

Neural Text Matching Community 3.7k Jan 02, 2023
LSTM based Sentiment Classification using Tensorflow - Amazon Reviews Rating

LSTM based Sentiment Classification using Tensorflow - Amazon Reviews Rating (Dataset) The dataset is from Amazon Review Data (2018)

Immanuvel Prathap S 1 Jan 16, 2022
숭실대학교 컴퓨터학부 전공종합설계프로젝트

✨ 시각장애인을 위한 버스도착 알림 장치 ✨ 👀 개요 현대 사회에서 대중교통 위치 정보를 이용하여 사람들이 간단하게 이용할 대중교통의 정보를 얻고 쉽게 대중교통을 이용할 수 있다. 해당 정보는 각종 어플리케이션과 대중교통 이용시설에서 위치 정보를 제공하고 있지만 시각

taegyun 3 Jan 25, 2022
Bidirectional Variational Inference for Non-Autoregressive Text-to-Speech (BVAE-TTS)

Bidirectional Variational Inference for Non-Autoregressive Text-to-Speech (BVAE-TTS) Yoonhyung Lee, Joongbo Shin, Kyomin Jung Abstract: Although early

LEE YOON HYUNG 147 Dec 05, 2022
CMeEE 数据集医学实体抽取

医学实体抽取_GlobalPointer_torch 介绍 思想来自于苏神 GlobalPointer,原始版本是基于keras实现的,模型结构实现参考现有 pytorch 复现代码【感谢!】,基于torch百分百复现苏神原始效果。 数据集 中文医学命名实体数据集 点这里申请,很简单,共包含九类医学

85 Dec 28, 2022