AttentionGAN for Unpaired Image-to-Image Translation & Multi-Domain Image-to-Image Translation

Overview

License CC BY-NC-SA 4.0 Python 3.6 Packagist Last Commit Maintenance Contributing Ask Me Anything !

AttentionGAN-v2 for Unpaired Image-to-Image Translation

AttentionGAN-v2 Framework

The proposed generator learns both foreground and background attentions. It uses the foreground attention to select from the generated output for the foreground regions, while uses the background attention to maintain the background information from the input image. Please refer to our papers for more details.

Framework

Comparsion with State-of-the-Art Methods

Selfie To Anime Translation

Result

Horse to Zebra Translation

Result
Result

Zebra to Horse Translation

Result

Apple to Orange Translation

Result

Orange to Apple Translation

Result

Map to Aerial Photo Translation

Result

Aerial Photo to Map Translation

Result

Style Transfer

Result

Visualization of Learned Attention Masks

Selfie to Anime Translation

Result

Horse to Zebra Translation

Attention

Zebra to Horse Translation

Attention

Apple to Orange Translation

Attention

Orange to Apple Translation

Attention

Map to Aerial Photo Translation

Attention

Aerial Photo to Map Translation

Attention

Extended Paper | Conference Paper

AttentionGAN: Unpaired Image-to-Image Translation using Attention-Guided Generative Adversarial Networks.
Hao Tang1, Hong Liu2, Dan Xu3, Philip H.S. Torr3 and Nicu Sebe1.
1University of Trento, Italy, 2Peking University, China, 3University of Oxford, UK.
In TNNLS 2021 & IJCNN 2019 Oral.
The repository offers the official implementation of our paper in PyTorch.

Are you looking for AttentionGAN-v1 for Unpaired Image-to-Image Translation?

Paper | Code

Are you looking for AttentionGAN-v1 for Multi-Domain Image-to-Image Translation?

Paper | Code

Facial Expression-to-Expression Translation

Result Order: The Learned Attention Masks, The Learned Content Masks, Final Results

Facial Attribute Transfer

Attention Order: The Learned Attention Masks, The Learned Content Masks, Final Results

Result Order: The Learned Attention Masks, AttentionGAN, StarGAN

License

Creative Commons License
Copyright (C) 2019 University of Trento, Italy.

All rights reserved. Licensed under the CC BY-NC-SA 4.0 (Attribution-NonCommercial-ShareAlike 4.0 International)

The code is released for academic research use only. For commercial use, please contact [email protected].

Installation

Clone this repo.

git clone https://github.com/Ha0Tang/AttentionGAN
cd AttentionGAN/

This code requires PyTorch 0.4.1+ and python 3.6.9+. Please install dependencies by

pip install -r requirements.txt (for pip users)

or

./scripts/conda_deps.sh (for Conda users)

To reproduce the results reported in the paper, you would need an NVIDIA Tesla V100 with 16G memory.

Dataset Preparation

Download the datasets using the following script. Please cite their paper if you use the data. Try twice if it fails the first time!

sh ./datasets/download_cyclegan_dataset.sh dataset_name

The selfie2anime dataset can be download here.

AttentionGAN Training/Testing

  • Download a dataset using the previous script (e.g., horse2zebra).
  • To view training results and loss plots, run python -m visdom.server and click the URL http://localhost:8097.
  • Train a model:
sh ./scripts/train_attentiongan.sh
  • To see more intermediate results, check out ./checkpoints/horse2zebra_attentiongan/web/index.html.
  • How to continue train? Append --continue_train --epoch_count xxx on the command line.
  • Test the model:
sh ./scripts/test_attentiongan.sh
  • The test results will be saved to a html file here: ./results/horse2zebra_attentiongan/latest_test/index.html.

Generating Images Using Pretrained Model

  • You need download a pretrained model (e.g., horse2zebra) with the following script:
sh ./scripts/download_attentiongan_model.sh horse2zebra
  • The pretrained model is saved at ./checkpoints/{name}_pretrained/latest_net_G.pth.
  • Then generate the result using
python test.py --dataroot ./datasets/horse2zebra --name horse2zebra_pretrained --model attention_gan --dataset_mode unaligned --norm instance --phase test --no_dropout --load_size 256 --crop_size 256 --batch_size 1 --gpu_ids 0 --num_test 5000 --epoch latest --saveDisk

The results will be saved at ./results/. Use --results_dir {directory_path_to_save_result} to specify the results directory. Note that if you want to save the intermediate results and have enough disk space, remove --saveDisk on the command line.

  • For your own experiments, you might want to specify --netG, --norm, --no_dropout to match the generator architecture of the trained model.

Image Translation with Geometric Changes Between Source and Target Domains

For instance, if you want to run experiments of Selfie to Anime Translation. Usage: replace attention_gan_model.py and networks with the ones in the AttentionGAN-geo folder.

Test the Pretrained Model

Download data and pretrained model according above instructions.

python test.py --dataroot ./datasets/selfie2anime/ --name selfie2anime_pretrained --model attention_gan --dataset_mode unaligned --norm instance --phase test --no_dropout --load_size 256 --crop_size 256 --batch_size 1 --gpu_ids 0 --num_test 5000 --epoch latest

Train a New Model

python train.py --dataroot ./datasets/selfie2anime/ --name selfie2anime_attentiongan --model attention_gan --dataset_mode unaligned --pool_size 50 --no_dropout --norm instance --lambda_A 10 --lambda_B 10 --lambda_identity 0.5 --load_size 286 --crop_size 256 --batch_size 4 --niter 100 --niter_decay 100 --gpu_ids 0 --display_id 0 --display_freq 100 --print_freq 100

Test the Trained Model

python test.py --dataroot ./datasets/selfie2anime/ --name selfie2anime_attentiongan --model attention_gan --dataset_mode unaligned --norm instance --phase test --no_dropout --load_size 256 --crop_size 256 --batch_size 1 --gpu_ids 0 --num_test 5000 --epoch latest

Evaluation Code

  • FID: Official Implementation
  • KID or Here: Suggested by UGATIT. Install Steps: conda create -n python36 pyhton=3.6 anaconda and pip install --ignore-installed --upgrade tensorflow==1.13.1. If you encounter the issue AttributeError: module 'scipy.misc' has no attribute 'imread', please do pip install scipy==1.1.0.

Citation

If you use this code for your research, please cite our papers.

@article{tang2021attentiongan,
  title={AttentionGAN: Unpaired Image-to-Image Translation using Attention-Guided Generative Adversarial Networks},
  author={Tang, Hao and Liu, Hong and Xu, Dan and Torr, Philip HS and Sebe, Nicu},
  journal={IEEE Transactions on Neural Networks and Learning Systems (TNNLS)},
  year={2021} 
}

@inproceedings{tang2019attention,
  title={Attention-Guided Generative Adversarial Networks for Unsupervised Image-to-Image Translation},
  author={Tang, Hao and Xu, Dan and Sebe, Nicu and Yan, Yan},
  booktitle={International Joint Conference on Neural Networks (IJCNN)},
  year={2019}
}

Acknowledgments

This source code is inspired by CycleGAN, GestureGAN, and SelectionGAN.

Contributions

If you have any questions/comments/bug reports, feel free to open a github issue or pull a request or e-mail to the author Hao Tang ([email protected]).

Collaborations

I'm always interested in meeting new people and hearing about potential collaborations. If you'd like to work together or get in contact with me, please email [email protected]. Some of our projects are listed here.


Figure out what you like. Try to become the best in the world of it.

Owner
Hao Tang
To develop a complete mind: Study the science of art; Study the art of science. Learn how to see. Realize that everything connects to everything else.
Hao Tang
Code for our CVPR 2021 paper "MetaCam+DSCE"

Joint Noise-Tolerant Learning and Meta Camera Shift Adaptation for Unsupervised Person Re-Identification (CVPR'21) Introduction Code for our CVPR 2021

FlyingRoastDuck 59 Oct 31, 2022
Molecular Sets (MOSES): A Benchmarking Platform for Molecular Generation Models

Molecular Sets (MOSES): A benchmarking platform for molecular generation models Deep generative models are rapidly becoming popular for the discovery

MOSES 656 Dec 29, 2022
The audio-video synchronization of MKV Container Format is exploited to achieve data hiding

The audio-video synchronization of MKV Container Format is exploited to achieve data hiding, where the hidden data can be utilized for various management purposes, including hyper-linking, annotation

Maxim Zaika 1 Nov 17, 2021
SymmetryNet: Learning to Predict Reflectional and Rotational Symmetries of 3D Shapes from Single-View RGB-D Images

SymmetryNet SymmetryNet: Learning to Predict Reflectional and Rotational Symmetries of 3D Shapes from Single-View RGB-D Images ACM Transactions on Gra

26 Dec 05, 2022
HPRNet: Hierarchical Point Regression for Whole-Body Human Pose Estimation

HPRNet: Hierarchical Point Regression for Whole-Body Human Pose Estimation Official PyTroch implementation of HPRNet. HPRNet: Hierarchical Point Regre

Nermin Samet 53 Dec 04, 2022
Open AI's Python library

OpenAI Python Library The OpenAI Python library provides convenient access to the OpenAI API from applications written in the Python language. It incl

Pavan Ananth Sharma 3 Jul 10, 2022
Optical Character Recognition + Instance Segmentation for russian and english languages

Распознавание рукописного текста в школьных тетрадях Соревнование, проводимое в рамках олимпиады НТО, разработанное Сбером. Платформа ODS. Результаты

Gerasimov Maxim 21 Dec 19, 2022
PyTorch implementation of our paper How robust are discriminatively trained zero-shot learning models?

How robust are discriminatively trained zero-shot learning models? This repository contains the PyTorch implementation of our paper How robust are dis

Mehmet Kerim Yucel 5 Feb 04, 2022
Nvdiffrast - Modular Primitives for High-Performance Differentiable Rendering

Nvdiffrast – Modular Primitives for High-Performance Differentiable Rendering Modular Primitives for High-Performance Differentiable Rendering Samuli

NVIDIA Research Projects 675 Jan 06, 2023
Object tracking using YOLO and a tracker(KCF, MOSSE, CSRT) in openCV

Object tracking using YOLO and a tracker(KCF, MOSSE, CSRT) in openCV File YOLOv3 weight can be downloaded

Ngoc Quyen Ngo 2 Mar 27, 2022
Tutorial page of the Climate Hack, the greatest hackathon ever

Tutorial page of the Climate Hack, the greatest hackathon ever

UCL Artificial Intelligence Society 12 Jul 02, 2022
Yolo algorithm for detection + centroid tracker to track vehicles

Vehicle Tracking using Centroid tracker Algorithm used : Yolo algorithm for detection + centroid tracker to track vehicles Backend : opencv and python

6 Dec 21, 2022
Foreground-Action Consistency Network for Weakly Supervised Temporal Action Localization

FAC-Net Foreground-Action Consistency Network for Weakly Supervised Temporal Action Localization Linjiang Huang (CUHK), Liang Wang (CASIA), Hongsheng

21 Nov 22, 2022
Understanding the Generalization Benefit of Model Invariance from a Data Perspective

Understanding the Generalization Benefit of Model Invariance from a Data Perspective This is the code for our NeurIPS2021 paper "Understanding the Gen

1 Jan 15, 2022
Code for EMNLP2021 paper "Allocating Large Vocabulary Capacity for Cross-lingual Language Model Pre-training"

VoCapXLM Code for EMNLP2021 paper Allocating Large Vocabulary Capacity for Cross-lingual Language Model Pre-training Environment DockerFile: dancingso

Bo Zheng 15 Jul 28, 2022
Open CV - Convert a picture to look like a cartoon sketch in python

Use the video https://www.youtube.com/watch?v=k7cVPGpnels for initial learning.

Sammith S Bharadwaj 3 Jan 29, 2022
MutualGuide is a compact object detector specially designed for embedded devices

Introduction MutualGuide is a compact object detector specially designed for embedded devices. Comparing to existing detectors, this repo contains two

ZHANG Heng 103 Dec 13, 2022
MINIROCKET: A Very Fast (Almost) Deterministic Transform for Time Series Classification

MINIROCKET: A Very Fast (Almost) Deterministic Transform for Time Series Classification

187 Dec 26, 2022
The pytorch implementation of SOKD (BMVC2021).

Semi-Online Knowledge Distillation Implementations of SOKD. Requirements This repo was tested with Python 3.8, PyTorch 1.5.1, torchvision 0.6.1, CUDA

4 Dec 19, 2021
NFNets and Adaptive Gradient Clipping for SGD implemented in PyTorch

PyTorch implementation of Normalizer-Free Networks and SGD - Adaptive Gradient Clipping Paper: https://arxiv.org/abs/2102.06171.pdf Original code: htt

Vaibhav Balloli 320 Jan 02, 2023