This is an official implementation of the High-Resolution Transformer for Dense Prediction.

Overview

High-Resolution Transformer for Dense Prediction

Introduction

This is the official implementation of High-Resolution Transformer (HRT). We present a High-Resolution Transformer (HRT) that learns high-resolution representations for dense prediction tasks, in contrast to the original Vision Transformer that produces low-resolution representations and has high memory and computational cost. We take advantage of the multi-resolution parallel design introduced in high-resolution convolutional networks (HRNet), along with local-window self-attention that performs self-attention over small non-overlapping image windows, for improving the memory and computation efficiency. In addition, we introduce a convolution into the FFN to exchange information across the disconnected image windows. We demonstrate the effectiveness of the High-Resolution Transformeron human pose estimation and semantic segmentation tasks.

  • The High-Resolution Transformer architecture:

teaser

Pose estimation

2d Human Pose Estimation

Results on COCO val2017 with detector having human AP of 56.4 on COCO val2017 dataset

Backbone Input Size AP AP50 AP75 ARM ARL AR ckpt log script
HRT-S 256x192 74.0% 90.2% 81.2% 70.4% 80.7% 79.4% ckpt log script
HRT-S 384x288 75.6% 90.3% 82.2% 71.6% 82.5% 80.7% ckpt log script
HRT-B 256x192 75.6% 90.8% 82.8% 71.7% 82.6% 80.8% ckpt log script
HRT-B 384x288 77.2% 91.0% 83.6% 73.2% 84.2% 82.0% ckpt log script

Results on COCO test-dev with detector having human AP of 56.4 on COCO val2017 dataset

Backbone Input Size AP AP50 AP75 ARM ARL AR ckpt log script
HRT-S 384x288 74.5% 92.3% 82.1% 70.7% 80.6% 79.8% ckpt log script
HRT-B 384x288 76.2% 92.7% 83.8% 72.5% 82.3% 81.2% ckpt log script

The models are first pre-trained on ImageNet-1K dataset, and then fine-tuned on COCO val2017 dataset.

Semantic segmentation

Cityscapes

Performance on the Cityscapes dataset. The models are trained and tested with input size of 512x1024 and 1024x2048 respectively.

Methods Backbone Window Size Train Set Test Set Iterations Batch Size OHEM mIoU mIoU (Multi-Scale) Log ckpt script
OCRNet HRT-S 7x7 Train Val 80000 8 Yes 80.0 81.0 log ckpt script
OCRNet HRT-B 7x7 Train Val 80000 8 Yes 81.4 82.0 log ckpt script
OCRNet HRT-B 15x15 Train Val 80000 8 Yes 81.9 82.6 log ckpt script

PASCAL-Context

The models are trained with the input size of 520x520, and tested with original size.

Methods Backbone Window Size Train Set Test Set Iterations Batch Size OHEM mIoU mIoU (Multi-Scale) Log ckpt script
OCRNet HRT-S 7x7 Train Val 60000 16 Yes 53.8 54.6 log ckpt script
OCRNet HRT-B 7x7 Train Val 60000 16 Yes 56.3 57.1 log ckpt script
OCRNet HRT-B 15x15 Train Val 60000 16 Yes 57.6 58.5 log ckpt script

COCO-Stuff

The models are trained with input size of 520x520, and tested with original size.

Methods Backbone Window Size Train Set Test Set Iterations Batch Size OHEM mIoU mIoU (Multi-Scale) Log ckpt script
OCRNet HRT-S 7x7 Train Val 60000 16 Yes 37.9 38.9 log ckpt script
OCRNet HRT-B 7x7 Train Val 60000 16 Yes 41.6 42.5 log ckpt script
OCRNet HRT-B 15x15 Train Val 60000 16 Yes 42.4 43.3 log ckpt script

ADE20K

The models are trained with input size of 520x520, and tested with original size. The results with window size 15x15 will be updated latter.

Methods Backbone Window Size Train Set Test Set Iterations Batch Size OHEM mIoU mIoU (Multi-Scale) Log ckpt script
OCRNet HRT-S 7x7 Train Val 150000 8 Yes 44.0 45.1 log ckpt script
OCRNet HRT-B 7x7 Train Val 150000 8 Yes 46.3 47.6 log ckpt script
OCRNet HRT-B 13x13 Train Val 150000 8 Yes 48.7 50.0 log ckpt script
OCRNet HRT-B 15x15 Train Val 150000 8 Yes - - - - -

Classification

Results on ImageNet-1K

Backbone [email protected] [email protected] #params FLOPs ckpt log script
HRT-T 78.6% 94.2% 8.0M 1.83G ckpt log script
HRT-S 81.2% 95.6% 13.5M 3.56G ckpt log script
HRT-B 82.8% 96.3% 50.3M 13.71G ckpt log script

Citation

If you find this project useful in your research, please consider cite:

@article{YuanFHZCW21,
  title={HRT: High-Resolution Transformer for Dense Prediction},
  author={Yuhui Yuan and Rao Fu and Lang Huang and Chao Zhang and Xilin Chen and Jingdong Wang},
  booktitle={arXiv},
  year={2021}
}

Acknowledgment

This project is developed based on the Swin-Transformer, openseg.pytorch, and mmpose.

git diff-index HEAD
git subtree add -P pose <url to sub-repo> <sub-repo branch>
Comments
  • Question about Local Self-Attention of your code

    Question about Local Self-Attention of your code

    Hi,I‘m very interested in your work about the Local Self-Attention and feature fusion in Transformer。But I have a doubt that Because the input image size for the image classification task in the source code is fixed, 224 or 384, in other words, the size is an integer multiple of 32. If the input size is not fixed, for example the detection task, the input is 800x1333, although the feature map can be divided into window size windows by using padding, but for the key_ padding_ mask, how should the mask be handled?

    The shape of attention weights map is [bs x H/7 x W/7, 49, 49], default there window size is 7, but the key padding mask shape is [1, HW], so how can I convert this mask to match the attention weights map。

    I sincerely hope you can give me some advice about this question. Thanks !

    opened by Huzhen757 4
  • about pose training speed

    about pose training speed

    the computation cost of HRF-s 256 isd about 2.8G flops. but when i training it, i found that it is significantly slower than the hrnet which have about 7.9 Gflops do you know how to solve it? thanks

    opened by maowayne123 4
  • Is the padding module wrong?

    Is the padding module wrong?

    Hello, I observes in the class PadBlock, the operation you have done is "n (qh ph) (qw pw) c -> (ph pw) (n qh qw) c" which you makes the padding group as batch dim. Therefore, it may cause a problem that you consider the pad-group wise attention across all batches. Do you think the permutation should be "n (qh ph) (qw pw) c -> (n ph pw) (qh qw) c"

    opened by UBCIntelliview 3
  • Need pre-trained model on ImageNet-1K

    Need pre-trained model on ImageNet-1K

    Hi, thanks for your work! I'm trying to train your model in custom config from scratch, but have not found any pre-trained model on ImageNet-1K. Do you plan to share these models?

    opened by WinstonDeng 2
  • undefined symbol: _Z13__THCudaCheck9cudaErrorPKci

    undefined symbol: _Z13__THCudaCheck9cudaErrorPKci

    ` FutureWarning, WARNING:torch.distributed.run:


    Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.


    Traceback (most recent call last): File "tools/train.py", line 168, in main() File "tools/train.py", line 122, in main env_info_dict = collect_env() File "/dataset/wh/wh_code/HRFormer-main/pose/mmpose/utils/collect_env.py", line 8, in collect_env env_info = collect_basic_env() File "/home/celia/anaconda3/envs/open-mmlab/lib/python3.7/site-packages/mmcv/utils/env.py", line 85, in collect_env from mmcv.ops import get_compiler_version, get_compiling_cuda_version File "/home/celia/anaconda3/envs/open-mmlab/lib/python3.7/site-packages/mmcv/ops/init.py", line 1, in from .bbox import bbox_overlaps File "/home/celia/anaconda3/envs/open-mmlab/lib/python3.7/site-packages/mmcv/ops/bbox.py", line 3, in ext_module = ext_loader.load_ext('_ext', ['bbox_overlaps']) File "/home/celia/anaconda3/envs/open-mmlab/lib/python3.7/site-packages/mmcv/utils/ext_loader.py", line 12, in load_ext ext = importlib.import_module('mmcv.' + name) File "/home/celia/anaconda3/envs/open-mmlab/lib/python3.7/importlib/init.py", line 127, in import_module return _bootstrap._gcd_import(name[level:], package, level) ImportError: /home/celia/anaconda3/envs/open-mmlab/lib/python3.7/site-packages/mmcv/_ext.cpython-37m-x86_64-linux-gnu.so: undefined symbol: _Z13__THCudaCheck9cudaErrorPKci ERROR:torch.distributed.elastic.multiprocessing.api:failed (exitcode: 1) local_rank: 0 (pid: 42674) of binary: /home/celia/anaconda3/envs/open-mmlab/bin/python Traceback (most recent call last): File "/home/celia/anaconda3/envs/open-mmlab/lib/python3.7/runpy.py", line 193, in _run_module_as_main "main", mod_spec) File "/home/celia/anaconda3/envs/open-mmlab/lib/python3.7/runpy.py", line 85, in _run_code exec(code, run_globals) File "/home/celia/anaconda3/envs/open-mmlab/lib/python3.7/site-packages/torch/distributed/launch.py", line 193, in main() File "/home/celia/anaconda3/envs/open-mmlab/lib/python3.7/site-packages/torch/distributed/launch.py", line 189, in main launch(args) File "/home/celia/anaconda3/envs/open-mmlab/lib/python3.7/site-packages/torch/distributed/launch.py", line 174, in launch run(args) File "/home/celia/anaconda3/envs/open-mmlab/lib/python3.7/site-packages/torch/distributed/run.py", line 718, in run )(*cmd_args) File "/home/celia/anaconda3/envs/open-mmlab/lib/python3.7/site-packages/torch/distributed/launcher/api.py", line 131, in call return launch_agent(self._config, self._entrypoint, list(args)) File "/home/celia/anaconda3/envs/open-mmlab/lib/python3.7/site-packages/torch/distributed/launcher/api.py", line 247, in launch_agent failures=result.failures, torch.distributed.elastic.multiprocessing.errors.ChildFailedError:

    tools/train.py FAILED

    Failures: [1]: time : 2022-10-24_10:03:43 host : omnisky rank : 1 (local_rank: 1) exitcode : 1 (pid: 42675) error_file: <N/A> traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html [2]: time : 2022-10-24_10:03:43 host : omnisky rank : 2 (local_rank: 2) exitcode : 1 (pid: 42676) error_file: <N/A> traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html [3]: time : 2022-10-24_10:03:43 host : omnisky rank : 3 (local_rank: 3) exitcode : 1 (pid: 42677) error_file: <N/A> traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html

    Root Cause (first observed failure): [0]: time : 2022-10-24_10:03:43 host : omnisky rank : 0 (local_rank: 0) exitcode : 1 (pid: 42674) error_file: <N/A> traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html ============================================================`

    opened by yzew 1
  • Pretrained model for cityscapes

    Pretrained model for cityscapes

    Thanks for your great job. I have some trouble for reproducing the segmentation results of cityscapes. Then I check the log and find out it might be the problem of pretrained models. For now I use the ImageNet model released as pretrained. Can you release the pretrained model for cityscapes? Thanks a lot!

    opened by devillala 1
  • Cuda out of memory on resume (incl. fix)

    Cuda out of memory on resume (incl. fix)

    If ran out of memory with exact same params as in training (which worked). Loading the model first to cpu fixes the problem:

    resume_dict = torch.load(self.configer.get('network', 'resume'),map_location='cpu')

    maybe it helps somebody

    021-08-25 14:51:29,793 INFO [data_helper.py, 126] Input keys: ['img'] 2021-08-25 14:51:29,793 INFO [data_helper.py, 127] Target keys: ['labelmap'] Traceback (most recent call last): File "/home/rsa-key-20190908/HRFormer/seg/main.py", line 541, in model.train() File "/home/rsa-key-20190908/HRFormer/seg/segmentor/trainer.py", line 438, in train self.__train() File "/home/rsa-key-20190908/HRFormer/seg/segmentor/trainer.py", line 187, in __train outputs = self.seg_net(*inputs) File "/opt/conda/lib/python3.7/site-packages/torch/nn/modules/module.py", line 889, in _call_impl result = self.forward(*input, **kwargs) File "/opt/conda/lib/python3.7/site-packages/torch/nn/parallel/distributed.py", line 705, in forward output = self.module(*inputs[0], **kwargs[0]) File "/opt/conda/lib/python3.7/site-packages/torch/nn/modules/module.py", line 889, in call_impl result = self.forward(*input, **kwargs) File "/home/rsa-key-20190908/HRFormer/seg/lib/models/nets/hrt.py", line 117, in forward x = self.backbone(x) File "/opt/conda/lib/python3.7/site-packages/torch/nn/modules/module.py", line 889, in _call_impl result = self.forward(*input, **kwargs) File "/home/rsa-key-20190908/HRFormer/seg/lib/models/backbones/hrt/hrt_backbone.py", line 579, in forward y_list = self.stage3(x_list) File "/opt/conda/lib/python3.7/site-packages/torch/nn/modules/module.py", line 889, in _call_impl result = self.forward(*input, **kwargs) File "/opt/conda/lib/python3.7/site-packages/torch/nn/modules/container.py", line 119, in forward input = module(input) File "/opt/conda/lib/python3.7/site-packages/torch/nn/modules/module.py", line 889, in _call_impl result = self.forward(*input, **kwargs) File "/home/rsa-key-20190908/HRFormer/seg/lib/models/backbones/hrt/hrt_backbone.py", line 282, in forward x[i] = self.branchesi File "/opt/conda/lib/python3.7/site-packages/torch/nn/modules/module.py", line 889, in _call_impl result = self.forward(*input, **kwargs) File "/opt/conda/lib/python3.7/site-packages/torch/nn/modules/container.py", line 119, in forward input = module(input) File "/opt/conda/lib/python3.7/site-packages/torch/nn/modules/module.py", line 889, in _call_impl result = self.forward(*input, **kwargs) File "/home/rsa-key-20190908/HRFormer/seg/lib/models/backbones/hrt/modules/transformer_block.py", line 103, in forward x = x + self.drop_path(self.attn(self.norm1(x), H, W)) File "/opt/conda/lib/python3.7/site-packages/torch/nn/modules/module.py", line 889, in _call_impl result = self.forward(*input, **kwargs) File "/home/rsa-key-20190908/HRFormer/seg/lib/models/backbones/hrt/modules/multihead_isa_pool_attention.py", line 41, in forward out, _, _ = self.attn(x_permute, x_permute, x_permute, rpe=self.with_rpe, **kwargs) File "/opt/conda/lib/python3.7/site-packages/torch/nn/modules/module.py", line 889, in _call_impl result = self.forward(*input, **kwargs) File "/home/rsa-key-20190908/HRFormer/seg/lib/models/backbones/hrt/modules/multihead_isa_attention.py", line 116, in forward rpe=rpe, File "/home/rsa-key-20190908/HRFormer/seg/lib/models/backbones/hrt/modules/multihead_isa_attention.py", line 311, in multi_head_attention_forward ) + relative_position_bias.unsqueeze(0) RuntimeError: CUDA out of memory. Tried to allocate 20.00 MiB (GPU 0; 15.78 GiB total capacity; 6.64 GiB already allocated; 27.25 MiB free; 6.66 GiB reserved in total by PyTorch) Killing subprocess 6170

    opened by marcok 1
  • CVE-2007-4559 Patch

    CVE-2007-4559 Patch

    Patching CVE-2007-4559

    Hi, we are security researchers from the Advanced Research Center at Trellix. We have began a campaign to patch a widespread bug named CVE-2007-4559. CVE-2007-4559 is a 15 year old bug in the Python tarfile package. By using extract() or extractall() on a tarfile object without sanitizing input, a maliciously crafted .tar file could perform a directory path traversal attack. We found at least one unsantized extractall() in your codebase and are providing a patch for you via pull request. The patch essentially checks to see if all tarfile members will be extracted safely and throws an exception otherwise. We encourage you to use this patch or your own solution to secure against CVE-2007-4559. Further technical information about the vulnerability can be found in this blog.

    If you have further questions you may contact us through this projects lead researcher Kasimir Schulz.

    opened by TrellixVulnTeam 0
  • Cannot reproduce the test accuracy.

    Cannot reproduce the test accuracy.

    I tried to run the test of HRFormer on ImageNet-1k, but the test result was strange. The top-1 accuracy is about 2.0%

    Test command

    bash run_eval.sh hrt/hrt_tiny ~/Downloads/hrt_tiny_imagenet_pretrained_top1_786.pth  ~/data/imagenet
    

    Test output

    [2022-09-06 15:00:15 hrt_tiny](main.py 157): INFO number of params: 8035820
    All checkpoints founded in output/hrt_tiny/default: []
    [2022-09-06 15:00:15 hrt_tiny](main.py 184): INFO no checkpoint found in output/hrt_tiny/default, ignoring auto resume
    [2022-09-06 15:00:15 hrt_tiny](utils.py 21): INFO ==============> Resuming form /home/mzr/Downloads/hrt_tiny_imagenet_pretrained_top1_786.pth....................
    [2022-09-06 15:00:15 hrt_tiny](utils.py 31): INFO <All keys matched successfully>
    [2022-09-06 15:00:19 hrt_tiny](main.py 389): INFO Test: [0/391]	Time 4.122 (4.122)	Loss 8.9438 (8.9438)	[email protected] 2.344 (2.344)	[email protected] 4.688 (4.688)	Mem 2309MB
    [2022-09-06 15:00:29 hrt_tiny](main.py 389): INFO Test: [10/391]	Time 1.028 (1.279)	Loss 9.0749 (9.3455)	[email protected] 5.469 (2.486)	[email protected] 12.500 (7.031)	Mem 2309MB
    [2022-09-06 15:00:39 hrt_tiny](main.py 389): INFO Test: [20/391]	Time 1.027 (1.159)	Loss 9.9610 (9.3413)	[email protected] 0.781 (2.269)	[email protected] 4.688 (7.403)	Mem 2309MB
    [2022-09-06 15:00:49 hrt_tiny](main.py 389): INFO Test: [30/391]	Time 0.952 (1.103)	Loss 9.1598 (9.3309)	[email protected] 1.562 (2.293)	[email protected] 7.812 (7.359)	Mem 2309MB
    [2022-09-06 15:00:59 hrt_tiny](main.py 389): INFO Test: [40/391]	Time 0.951 (1.071)	Loss 9.3239 (9.3605)	[email protected] 0.781 (2.210)	[email protected] 4.688 (7.241)	Mem 2309MB
    [2022-09-06 15:01:09 hrt_tiny](main.py 389): INFO Test: [50/391]	Time 0.952 (1.049)	Loss 9.7051 (9.3650)	[email protected] 0.781 (2.191)	[email protected] 3.125 (7.200)	Mem 2309MB
    [2022-09-06 15:01:18 hrt_tiny](main.py 389): INFO Test: [60/391]	Time 0.951 (1.035)	Loss 9.5935 (9.3584)	[email protected] 1.562 (2.075)	[email protected] 7.812 (7.095)	Mem 2309MB
    ...
    

    The environment is brand new according to the install instruction, and the checkpoint is from https://github.com/HRNet/HRFormer/releases/tag/v1.0.0 . The only change is I disabled the amp.

    opened by mzr1996 0
  • cocostuff dataset validation bug

    cocostuff dataset validation bug

    in the segmentation folder -> segmentation_val/segmentor/tester.py line183

    def __relabel(self, label_map):
        height, width = label_map.shape
        label_dst = np.zeros((height, width), dtype=np.uint8)
        for i in range(self.configer.get('data', 'num_classes')):
            label_dst[label_map == i] = self.configer.get('data', 'label_list')[i]
      
        label_dst = np.array(label_dst, dtype=np.uint8)
      
        return label_dst
    
    if self.configer.exists('data', 'reduce_zero_label') and self.configer.get('data', 'reduce_zero_label'):
        label_img = label_img + 1
        label_img = label_img.astype(np.uint8)
    if self.configer.exists('data', 'label_list'):
        label_img_ = self.__relabel(label_img)
    else:
        label_img_ = label_img
    

    for cocostuff dataset (171 num classes), the origin predicted classes range from 0-170, after +1, it range from 1-171, then feed the label_img into __relabel() func. However, the loop in __relabel() range from 0-170, and the class 171 is not be operated.

    opened by chencheng1203 0
  • missing `mmpose/version.py`

    missing `mmpose/version.py`

    Hi,

    When I installed mmpose in this repo, I found there is no mmpose/version.py file.

        Traceback (most recent call last):
          File "<string>", line 1, in <module>
          File "/home/chenshoufa/workspace/HRFormer/pose/setup.py", line 105, in <module>
            version=get_version(),
          File "/home/chenshoufa/workspace/HRFormer/pose/setup.py", line 14, in get_version
            with open(version_file, 'r') as f:
        FileNotFoundError: [Errno 2] No such file or directory: 'mmpose/version.py'
    
    
    opened by ShoufaChen 2
  • Inference speed

    Inference speed

    What is the inference speed for e.g. semantic segmentation using 1024x1024 (referring to table 5)? Measured on GPU of your choice, just to get a feeling?

    opened by UrskaJ 0
Owner
HRNet
Code for pose estimation is available at https://github.com/leoxiaobin/deep-high-resolution-net.pytorch
HRNet
Simplified interface for TensorFlow (mimicking Scikit Learn) for Deep Learning

SkFlow has been moved to Tensorflow. SkFlow has been moved to http://github.com/tensorflow/tensorflow into contrib folder specifically located here. T

3.2k Dec 29, 2022
Code for the TASLP paper "PSLA: Improving Audio Tagging With Pretraining, Sampling, Labeling, and Aggregation".

PSLA: Improving Audio Tagging with Pretraining, Sampling, Labeling, and Aggregation Introduction Getting Started FSD50K Recipe AudioSet Recipe Label E

Yuan Gong 84 Dec 27, 2022
An unsupervised learning framework for depth and ego-motion estimation from monocular videos

SfMLearner This codebase implements the system described in the paper: Unsupervised Learning of Depth and Ego-Motion from Video Tinghui Zhou, Matthew

Tinghui Zhou 1.8k Dec 30, 2022
A Python reference implementation of the CF data model

cfdm A Python reference implementation of the CF data model. References Compliance with FAIR principles Documentation https://ncas-cms.github.io/cfdm

NCAS CMS 25 Dec 13, 2022
A simple but complete full-attention transformer with a set of promising experimental features from various papers

x-transformers A concise but fully-featured transformer, complete with a set of promising experimental features from various papers. Install $ pip ins

Phil Wang 2.3k Jan 03, 2023
DNA-RECON { Automatic Web Reconnaissance Tool }

ABOUT TOOL : DNA-RECON is an automatic web reconnaissance tool written in python. This tool made for reconnaissance and information gathering with an

NIKUNJ BHATT 25 Aug 11, 2021
Raindrop strategy for Irregular time series

Graph-Guided Network For Irregularly Sampled Multivariate Time Series Overview This repository contains processed datasets and implementation code for

Zitnik Lab @ Harvard 74 Jan 03, 2023
Official implementation of the paper Do pedestrians pay attention? Eye contact detection for autonomous driving

Do pedestrians pay attention? Eye contact detection for autonomous driving Official implementation of the paper Do pedestrians pay attention? Eye cont

VITA lab at EPFL 26 Nov 02, 2022
Scalable Graph Neural Networks for Heterogeneous Graphs

Neighbor Averaging over Relation Subgraphs (NARS) NARS is an algorithm for node classification on heterogeneous graphs, based on scalable neighbor ave

Facebook Research 67 Dec 03, 2022
Software that can generate photos from paintings, turn horses into zebras, perform style transfer, and more.

CycleGAN PyTorch | project page | paper Torch implementation for learning an image-to-image translation (i.e. pix2pix) without input-output pairs, for

Jun-Yan Zhu 11.5k Dec 30, 2022
Code for the paper: Learning Adversarially Robust Representations via Worst-Case Mutual Information Maximization (https://arxiv.org/abs/2002.11798)

Representation Robustness Evaluations Our implementation is based on code from MadryLab's robustness package and Devon Hjelm's Deep InfoMax. For all t

Sicheng 19 Dec 07, 2022
Planar Prior Assisted PatchMatch Multi-View Stereo

ACMP [News] The code for ACMH is released!!! [News] The code for ACMM is released!!! About This repository contains the code for the paper Planar Prio

Qingshan Xu 127 Dec 31, 2022
PyTorch implementation of convolutional neural networks-based text-to-speech synthesis models

Deepvoice3_pytorch PyTorch implementation of convolutional networks-based text-to-speech synthesis models: arXiv:1710.07654: Deep Voice 3: Scaling Tex

Ryuichi Yamamoto 1.8k Jan 08, 2023
RM Operation can equivalently convert ResNet to VGG, which is better for pruning; and can help RepVGG perform better when the depth is large.

RMNet: Equivalently Removing Residual Connection from Networks This repository is the official implementation of "RMNet: Equivalently Removing Residua

184 Jan 04, 2023
deep-prae

Deep Probabilistic Accelerated Evaluation (Deep-PrAE) Our work presents an efficient rare event simulation methodology for black box autonomy using Im

Safe AI Lab 4 Apr 17, 2021
PASTRIE: A Corpus of Prepositions Annotated with Supersense Tags in Reddit International English

PASTRIE Official release of the corpus described in the paper: Michael Kranzlein, Emma Manning, Siyao Peng, Shira Wein, Aryaman Arora, and Nathan Schn

NERT @ Georgetown 4 Dec 02, 2021
Official implementation of "UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspective with Transformer"

[AAAI2022] UCTransNet This repo is the official implementation of "UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspectiv

Haonan Wang 199 Jan 03, 2023
Cognition-aware Cognate Detection

Cognition-aware Cognate Detection The repository which contains our code for our EACL 2021 paper titled, "Cognition-aware Cognate Detection". This wor

Prashant K. Sharma 1 Feb 01, 2022
Baseline powergrid model for NY

Baseline-powergrid-model-for-NY Table of Contents About The Project Built With Usage License Contact Acknowledgements About The Project As the urgency

Anderson Energy Lab at Cornell 6 Nov 24, 2022
Asymmetric Bilateral Motion Estimation for Video Frame Interpolation, ICCV2021

ABME (ICCV2021) Junheum Park, Chul Lee, and Chang-Su Kim Official PyTorch Code for "Asymmetric Bilateral Motion Estimation for Video Frame Interpolati

Junheum Park 86 Dec 28, 2022